MKN1Homo sapiens (Human)Cancer cell line

Also known as: MKN 1, MKN-1

🤖 AI SummaryBased on 14 publications

Quick Overview

Human gastric cancer cell line with potential for drug development and research.

Detailed Summary

The MKN1 cell line is a human gastric cancer cell line derived from a primary tumor. It is widely used in cancer research for studying the molecular mechanisms of gastric cancer and for drug development. This cell line has been characterized in multiple studies, including those focusing on genetic mutations, protein expression, and therapeutic responses. Research on MKN1 has contributed to understanding the role of specific genes and pathways in cancer progression and has been utilized in the development of targeted therapies. The cell line is also used to evaluate the efficacy of various anticancer agents and to identify potential biomarkers for treatment response.

Research Applications

Cancer biology researchDrug developmentGenetic and molecular studiesTherapeutic response evaluation

Key Characteristics

Human gastric cancer cell lineUsed in multiple studies for genetic and molecular analysisRelevant for drug development and targeted therapies
Generated on 6/17/2025

Basic Information

Database IDCVCL_1415
SpeciesHomo sapiens (Human)
Tissue SourceLymph node[UBERON:UBERON_0000029]

Donor Information

Age72
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseaseGastric adenosquamous carcinoma
LineageEsophagus/Stomach
SubtypeAdenosquamous Carcinoma of the Stomach
OncoTree CodeSTAS

DepMap Information

Source TypeHSRRB
Source IDACH-000351_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Val143Ala (c.428T>C)Hemizygous-from parent cell line MWCL-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
9,12
D13S317
10,12
D16S539
11,12
D18S51
13,16
D21S11
29
D3S1358
15,17
D5S818
11
D7S820
10
D8S1179
14
FGA
20,23
Penta D
10
Penta E
21
TH01
9
TPOX
8
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Blockade of CHRNB2 signaling with a therapeutic monoclonal antibody attenuates the aggressiveness of gastric cancer cells.

Iguchi Y., Katsuno M., Kodera Y.

Oncogene 40:5495-5504(2021).

Therapeutic monoclonal antibody targeting of neuronal pentraxin receptor to control metastasis in gastric cancer.

Kodera Y.

Mol. Cancer 19:131.1-131.14(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.

Kragh M., Horak I.D., Chung H.C., Rha S.Y.

Int. J. Cancer 143:151-159(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.

Yang H.H., Lee M.A.

PLoS ONE 9:E111146-E111146(2014).

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.

Firestein R., Zhang Z.-M.

Nat. Commun. 5:3830.1-3830.8(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

Screening of DNA copy-number aberrations in gastric cancer cell lines by array-based comparative genomic hybridization.

Okanoue T., Inazawa J.

Cancer Sci. 96:100-110(2005).

Molecular characteristics of eight gastric cancer cell lines established in Japan.

Yokozaki H.

Pathol. Int. 50:767-777(2000).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Thromboplastic and fibrinolytic activities of cultured human gastric cancer cell lines.

Naito S., Inoue S., Kinjo M., Tanaka K.

Gann 74:240-247(1983).

p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases.

Nakatani K., Nakano H., Sugimura T., Terada M.

Cancer Res. 51:5800-5805(1991).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Missense mutations and a deletion of the p53 gene in human gastric cancer.

Wada K., Uchida T., Nishisaki H., Nagao M., Kasuga M.

Biochem. Biophys. Res. Commun. 182:215-223(1992).

Thromboplastic and fibrinolytic activities of cultured human cancer cell lines.

Yasumoto K.

Br. J. Cancer 39:15-23(1979).

Gastric tumor cell lines.";

Sekiguchi M., Suzuki T.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.287-316; Academic Press; New York; USA (1994).