MKN1Homo sapiens (Human)Cancer cell line
Also known as: MKN 1, MKN-1
Quick Overview
Human gastric cancer cell line with potential for drug development and research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1415 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Lymph node[UBERON:UBERON_0000029] |
Donor Information
Age | 72 |
---|---|
Age Category | Adult |
Sex | Male |
Race | asian |
Disease Information
Disease | Gastric adenosquamous carcinoma |
---|---|
Lineage | Esophagus/Stomach |
Subtype | Adenosquamous Carcinoma of the Stomach |
OncoTree Code | STAS |
DepMap Information
Source Type | HSRRB |
---|---|
Source ID | ACH-000351_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Val143Ala (c.428T>C) | Hemizygous | - | from parent cell line MWCL-1 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Blockade of CHRNB2 signaling with a therapeutic monoclonal antibody attenuates the aggressiveness of gastric cancer cells.
Iguchi Y., Katsuno M., Kodera Y.
Oncogene 40:5495-5504(2021).
Therapeutic monoclonal antibody targeting of neuronal pentraxin receptor to control metastasis in gastric cancer.
Kodera Y.
Mol. Cancer 19:131.1-131.14(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.
Kragh M., Horak I.D., Chung H.C., Rha S.Y.
Int. J. Cancer 143:151-159(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.
Yang H.H., Lee M.A.
PLoS ONE 9:E111146-E111146(2014).
Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.
Firestein R., Zhang Z.-M.
Nat. Commun. 5:3830.1-3830.8(2014).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Kong D.-X., Yamori T.
Bioorg. Med. Chem. 20:1947-1951(2012).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.
Tomoda H., Yamori T., Tsuruo T.
J. Natl. Cancer Inst. 97:765-777(2005).
Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.
Yamori T.
Mol. Cancer Ther. 4:399-412(2005).
Screening of DNA copy-number aberrations in gastric cancer cell lines by array-based comparative genomic hybridization.
Okanoue T., Inazawa J.
Cancer Sci. 96:100-110(2005).
Molecular characteristics of eight gastric cancer cell lines established in Japan.
Yokozaki H.
Pathol. Int. 50:767-777(2000).
Screening the p53 status of human cell lines using a yeast functional assay.
Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Mol. Carcinog. 19:243-253(1997).
Thromboplastic and fibrinolytic activities of cultured human gastric cancer cell lines.
Naito S., Inoue S., Kinjo M., Tanaka K.
Gann 74:240-247(1983).
p53 gene mutations in gastric cancer metastases and in gastric cancer cell lines derived from metastases.
Nakatani K., Nakano H., Sugimura T., Terada M.
Cancer Res. 51:5800-5805(1991).
Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.
Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.
Jpn. J. Cancer Res. 82:1428-1435(1991).
Missense mutations and a deletion of the p53 gene in human gastric cancer.
Wada K., Uchida T., Nishisaki H., Nagao M., Kasuga M.
Biochem. Biophys. Res. Commun. 182:215-223(1992).
Thromboplastic and fibrinolytic activities of cultured human cancer cell lines.
Yasumoto K.
Br. J. Cancer 39:15-23(1979).
Gastric tumor cell lines.";
Sekiguchi M., Suzuki T.
(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.287-316; Academic Press; New York; USA (1994).