NCI-H1693Homo sapiens (Human)Cancer cell line

Also known as: NCIH1693, H-1693, H1693

🤖 AI SummaryBased on 11 publications

Quick Overview

Human small cell lung cancer cell line with known RB1 mutations and potential for drug sensitivity studies.

Detailed Summary

The NCI-H1693 cell line is a human small cell lung cancer (SCLC) cell line derived from a patient with metastatic disease. It is characterized by the presence of RB1 mutations, which are common in SCLC and play a critical role in cell cycle regulation. This cell line has been used in studies investigating the molecular mechanisms of SCLC, including the role of RB1 in tumor suppression and the identification of potential therapeutic targets. Research has shown that NCI-H1693 exhibits sensitivity to certain chemotherapeutic agents, making it a valuable model for preclinical drug testing. The cell line is also part of large-scale genomic and transcriptomic studies, contributing to the understanding of SCLC biology and the development of targeted therapies.

Research Applications

Molecular mechanisms of SCLCRB1 mutation analysisDrug sensitivity testingGenomic and transcriptomic profiling

Key Characteristics

RB1 mutationsSmall cell lung cancer originSensitivity to chemotherapeutic agentsUsed in large-scale genomic studies
Generated on 6/17/2025

Basic Information

Database IDCVCL_1488
SpeciesHomo sapiens (Human)
Tissue SourceLymph node[UBERON:UBERON_0000029]

Donor Information

Age55
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseLung adenocarcinoma
LineageLung
SubtypeLung Adenocarcinoma
OncoTree CodeLUAD

DepMap Information

Source TypeATCC
Source IDACH-000021_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53c.993+1G>T (IVS9+1G>T)UnspecifiedSplice donor mutationPubMed=31541927, PubMed=23613873, PubMed=18487078, PubMed=18006756, PubMed=16203773, PubMed=15287027
MutationSimpleSMARCA4p.Leu1085Glnfs*32 (c.3254_3270del)Heterozygous-Unknown, Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12,14
D10S1248
14,15
D12S391
18,20
D13S317
11
D16S539
10
D18S51
15
D19S433
14,15
D1S1656
17.3
D21S11
29
D22S1045
15
D2S1338
20
D2S441
14
D3S1358
16
D5S818
10,12
D7S820
9,10
D8S1179
12,15
FGA
22
Penta D
12,14
Penta E
7,12
TH01
9.3
TPOX
8
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Chemistry-first approach for nomination of personalized treatment in lung cancer.

Posner B.A., Minna J.D., Kim H.S., White M.A.

Cell 173:864-878.e29(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Lung cancer cell lines as tools for biomedical discovery and research.

Gazdar A.F., Girard L., Lockwood W.W., Lam W.L., Minna J.D.

J. Natl. Cancer Inst. 102:1310-1321(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

Zhou X.-M., Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.

Cell 131:1190-1203(2007).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features.

Gazdar A.F.

Oncogene 7:171-180(1992).

Web Resources