NCI-H1944Homo sapiens (Human)Cancer cell line

Also known as: NCIH1944, H-1944, H1944

🤖 AI SummaryBased on 11 publications

Quick Overview

Human lung cancer cell line with known RB1 mutations and potential for drug sensitivity studies.

Detailed Summary

The NCI-H1944 cell line is a human lung cancer cell line derived from a small cell lung cancer (SCLC) tumor. It is characterized by specific genetic alterations, including mutations in the RB1 gene, which is a key tumor suppressor involved in cell cycle regulation. These mutations contribute to the uncontrolled proliferation of cancer cells. The cell line has been utilized in various studies to investigate the molecular mechanisms underlying SCLC and to evaluate the efficacy of targeted therapies. Research has shown that NCI-H1944 exhibits sensitivity to certain chemotherapeutic agents, making it a valuable model for preclinical drug testing. Additionally, the cell line's genetic profile provides insights into the role of RB1 in cancer progression and therapeutic response.

Research Applications

Molecular mechanisms of SCLCDrug sensitivity testingRB1 gene mutation analysis

Key Characteristics

RB1 mutationsSCLC originChemotherapeutic sensitivity
Generated on 6/17/2025

Basic Information

Database IDCVCL_1508
SpeciesHomo sapiens (Human)
Tissue SourceLung[UBERON:UBERON_0002048]

Donor Information

Age62
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseLung adenocarcinoma
LineageLung
SubtypeLung Adenocarcinoma
OncoTree CodeLUAD

DepMap Information

Source TypeATCC
Source IDACH-000414_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleKRASp.Gly13Asp (c.38G>A)HeterozygousSomaticfrom parent cell line MDA-MB-231
MutationSimpleATRp.Arg2363Ter (c.7087C>T)Heterozygous-Unknown, Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
13
D13S317
11
D16S539
11
D18S51
18,19
D19S433
13,14
D21S11
28,31
D2S1338
16,19
D3S1358
15,18
D5S818
11
D7S820
11,12
D8S1179
14,15
FGA
21,25
Penta D
8,11
Penta E
5,11
TH01
6,7
TPOX
8
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Chemistry-first approach for nomination of personalized treatment in lung cancer.

Posner B.A., Minna J.D., Kim H.S., White M.A.

Cell 173:864-878.e29(2018).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

Zhou X.-M., Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.

Cell 131:1190-1203(2007).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features.

Gazdar A.F.

Oncogene 7:171-180(1992).

Web Resources