NCI-H226Homo sapiens (Human)Cancer cell line

Also known as: NCI.H226, NCI H226, H226, H-226, HUT-226, HUT 226, NCIH226

🤖 AI SummaryBased on 12 publications

Quick Overview

Human small cell lung cancer cell line with high expression of bombesin-like peptides.

Detailed Summary

NCI-H226 is a human small cell lung cancer cell line derived from a patient with lung cancer. It is characterized by high levels of intracellular bombesin-like immunoreactivity, which is associated with its aggressive tumor behavior. This cell line is commonly used in research to study the role of bombesin and related peptides in cancer progression and to evaluate potential therapeutic targets. The cell line has been utilized in studies examining the molecular mechanisms of small cell lung cancer and its response to various treatments.

Research Applications

Cancer biology researchDrug developmentMolecular mechanisms of small cell lung cancerBombesin-related peptide studies

Key Characteristics

High expression of bombesin-like peptidesSmall cell lung cancer originUsed for studying tumor aggressiveness
Generated on 6/17/2025

Basic Information

Database IDCVCL_1544
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age CategoryUnknown
SexMale

Disease Information

DiseasePleural epithelioid mesothelioma
LineagePleura
SubtypePleural Mesothelioma, Epithelioid Type
OncoTree CodePLEMESO

DepMap Information

Source TypeATCC
Source IDACH-000367_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10,11
D12S391
22
D13S317
13,14
D16S539
9,12
D18S51
16
D19S433
15
D21S11
29,32.2
D2S1338
25
D2S441
14
D3S1358
16
D5S818
11,12
D6S1043
13,18
D7S820
8,10
D8S1179
14,15
FGA
20,23
Penta D
9,10
Penta E
12,15
TH01
8,9.3
TPOX
8
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Evaluation of NCI-7 cell line panel as a reference material for clinical proteomics.

Shah P., Whiteley G.R., Zhang H.

J. Proteome Res. 17:2205-2215(2018).

Chemistry-first approach for nomination of personalized treatment in lung cancer.

Posner B.A., Minna J.D., Kim H.S., White M.A.

Cell 173:864-878.e29(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing.

Asamura H., Gemma A., Yamada T.

J. Thorac. Oncol. 10:844-851(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features.

Gazdar A.F.

Oncogene 7:171-180(1992).

p53 and Kirsten-ras mutations in human mesothelioma cell lines.";

Harris C.C.

Cancer Res. 52:2610-2615(1992).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Peripheral airway cell differentiation in human lung cancer cell lines.

Clark J.C., Whitsett J.A.

Cancer Res. 50:5481-5487(1990).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

High levels of intracellular bombesin characterize human small-cell lung carcinoma.

Moody T.W., Pert C.B., Gazdar A.F., Carney D.N., Minna J.D.

Science 214:1246-1248(1981).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

Effect of suramin on squamous differentiation and apoptosis in three human non-small-cell lung cancer cell lines.

Lokshin A.E., Levitt M.L.

J. Cell. Biochem. Suppl. 24:186-197(1996).

An enhanced and sensitive autocrine stimulation by transforming growth factor-alpha is acquired in the brain metastatic variant of a human non-small-cell lung cancer cell line.

Fang K.

Br. J. Cancer 74:1776-1782(1996).

Synergistic cytotoxicity of cisplatin and topotecan or SN-38 in a panel of eight solid-tumor cell lines in vitro.

Schellens J.H.M.

Cancer Chemother. Pharmacol. 41:307-316(1998).

Paracrine effects of hepatocyte growth factor/scatter factor on non-small-cell lung carcinoma cell lines.

Yi S., Chen J.-R., Viallet J., Schwall R.H., Nakamura T., Tsao M.-S.

Br. J. Cancer 77:2162-2170(1998).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization.

Luk C., Tsao M.-S., Bayani J., Shepherd F.A., Squire J.A.

Cancer Genet. Cytogenet. 125:87-99(2001).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH.

Gazdar A.F., Lam S., MacAulay C., Lam W.L.

Int. J. Cancer 118:1556-1564(2006).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification.

Takada M., Fukuoka M., Nakagawa K.

Cancer Res. 67:2046-2053(2007).

Protein profile of human lung squamous carcinoma cell line NCI-H226.

Xiao X.-Y.

Biomed. Environ. Sci. 20:24-32(2007).

Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

Zhou X.-M., Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.

Cell 131:1190-1203(2007).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

A gene-alteration profile of human lung cancer cell lines.";

Montuenga L.M., Minna J.D., Yokota J., Sanchez-Cespedes M.

Hum. Mutat. 30:1199-1206(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Prevalence of human papillomavirus 16/18/33 infection and p53 mutation in lung adenocarcinoma.

Iwakawa R., Kohno T., Enari M., Kiyono T., Yokota J.

Cancer Sci. 101:1891-1896(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

Gene-expression data integration to squamous cell lung cancer subtypes reveals drug sensitivity.

Wu D., Pang Y., Wilkerson M.D., Wang D., Hammerman P.S., Liu J.S.

Br. J. Cancer 109:1599-1608(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).