NCI-H23Homo sapiens (Human)Cancer cell line

Also known as: NCI.H23, NCI H23, H-23, H23, NCIH23, H63 (Confirmed by author personal communication.)

🤖 AI SummaryBased on 12 publications

Quick Overview

Human cancer cell line for research on genetic and molecular mechanisms.

Detailed Summary

The NCI-H23 cell line is a human cancer cell line derived from a tumor, widely used in cancer research. It is part of the NCI-60 panel, which includes a variety of cancer types. This cell line is utilized in studies involving gene expression, mutations, and drug response. Research on NCI-H23 has contributed to understanding cancer biology and therapeutic strategies. It is particularly valuable for investigating the molecular mechanisms underlying cancer progression and treatment resistance.

Research Applications

Gene expression analysisMutation studiesDrug response profilingCancer biology research

Key Characteristics

Part of NCI-60 panelUsed in molecular mechanism studiesValuable for drug development
Generated on 6/17/2025

Basic Information

Database IDCVCL_1547
SpeciesHomo sapiens (Human)
Tissue SourceLung[UBERON:UBERON_0002048]

Donor Information

Age51
Age CategoryAdult
SexMale
Raceblack_or_african_american

Disease Information

DiseaseLung adenocarcinoma
LineageLung
SubtypeLung Adenocarcinoma
OncoTree CodeLUAD

DepMap Information

Source TypeATCC
Source IDACH-000900_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleATMp.Gln1919Pro (c.5756A>C)Homozygous-from parent cell line NCI-H23
MutationSimpleKRASp.Gly12Cys (c.34G>T)Unspecified-PubMed=21173094
MutationSimpleSTK11p.Trp332Ter (c.996G>A)Homozygous-from parent cell line NCI-H23
MutationSimpleTP53p.Met246Ile (c.738G>C)Homozygous-from parent cell line NCI-H23

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
12
D16S539
9,11
D18S51
14,16
D19S433
12,14
D21S11
30
D2S1338
18,23
D3S1358
15
D5S818
12
D7S820
9,10
D8S1179
15
FGA
24
Penta D
8
Penta E
7,17
TH01
6
TPOX
8,9
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Evaluation of NCI-7 cell line panel as a reference material for clinical proteomics.

Shah P., Whiteley G.R., Zhang H.

J. Proteome Res. 17:2205-2215(2018).

Chemistry-first approach for nomination of personalized treatment in lung cancer.

Posner B.A., Minna J.D., Kim H.S., White M.A.

Cell 173:864-878.e29(2018).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer.

Maughan T.S., Ryan A.J.

Oncotarget 7:60807-60822(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Human biosample authentication using the high-throughput, cost-effective SNPtrace(TM) system.

Bourgon R., Neve R.M.

PLoS ONE 10:E0116218-E0116218(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Aberrant methylation and silencing of IRF8 expression in non-small cell lung cancer.

Shibata H., Ito T., Baba Y., Baba H.

Oncol. Lett. 8:1025-1030(2014).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Reconstructing targetable pathways in lung cancer by integrating diverse omics data.

Cao X.-H., Nesvizhskii A.I., Chinnaiyan A.M.

Nat. Commun. 4:2617.1-2617.13(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features.

Gazdar A.F.

Oncogene 7:171-180(1992).

Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation.

Linnoila R.I.

Oncogene 7:743-749(1992).

Novel antigens characteristic of neuroendocrine malignancies.";

Boerman O.C., Ramaekers F.C.S.

Cancer 67:619-633(1991).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Spontaneous changes in intermediate filament protein expression patterns in lung cancer cell lines.

Carney D.N., Vooijs G.P., Ramaekers F.C.S.

J. Cell Sci. 91:91-108(1988).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium.

Brower M., Carney D.N., Oie H.K., Gazdar A.F., Minna J.D.

Cancer Res. 46:798-806(1986).

Heterogeneity in the radiation survival curves and biochemical properties of human lung cancer cell lines.

Mitchell J.B.

J. Natl. Cancer Inst. 73:801-807(1984).

Monoclonal antibodies that demonstrate specificity for several types of human lung cancer.

Cuttitta F., Rosen S.T., Gazdar A.F., Minna J.D.

Proc. Natl. Acad. Sci. U.S.A. 78:4591-4595(1981).

High levels of intracellular bombesin characterize human small-cell lung carcinoma.

Moody T.W., Pert C.B., Gazdar A.F., Carney D.N., Minna J.D.

Science 214:1246-1248(1981).

Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

van Zijl P.L.

Eur. J. Cancer 31A:230-237(1995).

Insulin-like growth factor expression in human cancer cell lines.";

Grimley C., Battey J., Mulshine J.L., Cuttitta F.

J. Biol. Chem. 271:11477-11483(1996).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

Establishment of a drug sensitivity panel using human lung cancer cell lines.

Kohara H., Harada M.

Acta Med. Okayama 53:67-75(1999).

Comprehensive analysis of p53 gene mutation characteristics in lung carcinoma with special reference to histological subtypes.

Fujita T., Kiyama M., Tomizawa Y., Kohno T., Yokota J.

Int. J. Oncol. 15:927-934(1999).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Mutation and expression of the DCC gene in human lung cancer.";

Yokota J.

Neoplasia 2:300-305(2000).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

p53 status and its in vitro relationship to radiosensitivity and chemosensitivity in lung cancer.

Wagenius G.

Anticancer Res. 23:1207-1212(2003).

Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer.

Achiwa H., Oguri T., Sato S., Maeda H., Niimi T., Ueda R.

Cancer Sci. 95:753-757(2004).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer.

Cigudosa J.C., Lazo P.A., Sanchez-Cespedes M.

Hum. Mol. Genet. 18:1343-1352(2009).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

A gene-alteration profile of human lung cancer cell lines.";

Montuenga L.M., Minna J.D., Yokota J., Sanchez-Cespedes M.

Hum. Mutat. 30:1199-1206(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Prevalence of human papillomavirus 16/18/33 infection and p53 mutation in lung adenocarcinoma.

Iwakawa R., Kohno T., Enari M., Kiyono T., Yokota J.

Cancer Sci. 101:1891-1896(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer.

Ohba Y., Yamada T., Ito T., Baba Y., Baba H.

Oncol. Rep. 29:1308-1314(2013).