NCI-H358Homo sapiens (Human)Cancer cell line

Also known as: H358, H-358, NCIH358, H1358 (In table 1.)

🤖 AI SummaryBased on 11 publications

Quick Overview

Human lung cancer cell line with club cell origin, used in cancer research.

Detailed Summary

The NCI-H358 cell line is a human lung cancer cell line derived from a bronchioloalveolar carcinoma. It is characterized as a club cell type, which is a specific type of epithelial cell found in the respiratory tract. This cell line is utilized in various research applications, including the study of cancer biology, drug development, and molecular profiling. The cell line has been used in studies related to small cell lung cancer (SCLC) and has been part of comprehensive analyses involving proteomic and transcriptomic data. It is also part of large-scale cancer cell line databases, such as the Cancer Cell Line Encyclopedia (CCLE), which provides extensive genomic and molecular data for research purposes. The NCI-H358 cell line is known for its utility in understanding the molecular mechanisms of cancer and in developing targeted therapies.

Research Applications

Cancer BiologyDrug DevelopmentMolecular ProfilingProteomic AnalysisTranscriptomic Analysis

Key Characteristics

Derived from bronchioloalveolar carcinomaClub cell originUsed in SCLC researchPart of CCLE databaseUtilized in proteomic and transcriptomic studies
Generated on 6/17/2025

Basic Information

Database IDCVCL_1559
SpeciesHomo sapiens (Human)
Tissue SourceLung[UBERON:UBERON_0002048]

Donor Information

Age CategoryUnknown
SexMale

Disease Information

DiseaseMinimally invasive lung adenocarcinoma
LineageLung
SubtypeLung Adenocarcinoma
OncoTree CodeLUAD

DepMap Information

Source TypeATCC
Source IDACH-000860_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene deletionTP53-Homozygous2 out of 3 copiesfrom parent cell line HL-60
MutationSimpleCTNNB1p.Thr75Ala (c.223A>G)Heterozygous-from parent cell line NCI-H358
MutationSimpleKRASp.Gly12Cys (c.34G>T)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11,12
D10S1248
13,14
D12S391
20
D13S317
8,12
D16S539
12,13
D18S51
14
D19S433
13,14
D1S1656
15,15.3
D21S11
28,30
D22S1045
11,15
D2S1338
17,23
D2S441
11,15
D3S1358
14,18
D5S818
10,12
D6S1043
14
D7S820
10,11
D8S1179
13,14
DYS391
10
FGA
20,21
Penta D
10,13
Penta E
18
TH01
6
TPOX
8,9
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features.

Gazdar A.F.

Oncogene 7:171-180(1992).

Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation.

Linnoila R.I.

Oncogene 7:743-749(1992).

Metabolic activation of 4-ipomeanol in human lung, primary pulmonary carcinomas, and established human pulmonary carcinoma cell lines.

Adelberg S., Czerwinski M.J., McMahon N.A., Eggleston J.C., Boyd M.R.

J. Natl. Cancer Inst. 82:1420-1426(1990).

Peripheral airway cell differentiation in human lung cancer cell lines.

Clark J.C., Whitsett J.A.

Cancer Res. 50:5481-5487(1990).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium.

Brower M., Carney D.N., Oie H.K., Gazdar A.F., Minna J.D.

Cancer Res. 46:798-806(1986).

Mutations and altered expression of p16INK4 in human cancer.";

Harris C.C.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

Effect of suramin on squamous differentiation and apoptosis in three human non-small-cell lung cancer cell lines.

Lokshin A.E., Levitt M.L.

J. Cell. Biochem. Suppl. 24:186-197(1996).

Paracrine effects of hepatocyte growth factor/scatter factor on non-small-cell lung carcinoma cell lines.

Yi S., Chen J.-R., Viallet J., Schwall R.H., Nakamura T., Tsao M.-S.

Br. J. Cancer 77:2162-2170(1998).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization.

Luk C., Tsao M.-S., Bayani J., Shepherd F.A., Squire J.A.

Cancer Genet. Cytogenet. 125:87-99(2001).

Genetic alteration of the beta-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion.

Yoshioka H., Imaizumi M., Ueda Y., Takahashi M., Shimokata K.

Oncogene 20:4249-4257(2001).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.

Zhou X.-M., Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.

Cell 131:1190-1203(2007).

A gene-alteration profile of human lung cancer cell lines.";

Montuenga L.M., Minna J.D., Yokota J., Sanchez-Cespedes M.

Hum. Mutat. 30:1199-1206(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Prevalence of human papillomavirus 16/18/33 infection and p53 mutation in lung adenocarcinoma.

Iwakawa R., Kohno T., Enari M., Kiyono T., Yokota J.

Cancer Sci. 101:1891-1896(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

Reconstructing targetable pathways in lung cancer by integrating diverse omics data.

Cao X.-H., Nesvizhskii A.I., Chinnaiyan A.M.

Nat. Commun. 4:2617.1-2617.13(2013).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Chemistry-first approach for nomination of personalized treatment in lung cancer.

Posner B.A., Minna J.D., Kim H.S., White M.A.

Cell 173:864-878.e29(2018).

LMO1 functions as an oncogene by regulating TTK expression and correlates with neuroendocrine differentiation of lung cancer.

Minna J.D., Wistuba I.I., Pertsemlidis A.

Oncotarget 9:29601-29618(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

The cancer SENESCopedia: a delineation of cancer cell senescence.";

Leite de Oliveira R., Wessels L.F.A., Bernards R.

Cell Rep. 36:109441.1-109441.22(2021).

Proteomic and ultrastructural analysis of Clara cell and type II alveolar epithelial cell-type lung cancer cells.

Hou W.-L., Chang M., Liu X.-F., Hu L.-S., Hua S.-C.

Transl. Cancer Res. 9:565-576(2020).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).