NCI-H82Homo sapiens (Human)Cancer cell line

Also known as: NCI-H-82, H82, H-82, NCI H82, NCIH82, H82sclc

🤖 AI SummaryBased on 11 publications

Quick Overview

Human small cell lung cancer cell line with known genetic alterations.

Detailed Summary

The NCI-H82 cell line is a human small cell lung cancer (SCLC) cell line derived from a patient with small cell lung cancer. It is widely used in research to study the genetic and molecular mechanisms underlying SCLC progression. This cell line has been characterized for its response to various therapeutic agents, including Bcl-2 inhibitors and other targeted therapies. NCI-H82 is notable for its resistance to ABT-737, a Bcl-2 antagonist, which has implications for understanding drug resistance mechanisms in SCLC. The cell line has also been used to investigate the role of chromosomal abnormalities and gene mutations in cancer development, particularly in the context of 18q deletions and their association with tumor suppressor gene inactivation. Additionally, NCI-H82 has been utilized in studies examining the expression of growth factors and signaling pathways involved in cancer cell proliferation and survival.

Research Applications

Genetic and molecular mechanisms of SCLC progressionTherapeutic response to Bcl-2 inhibitorsChromosomal abnormalities and gene mutations in cancer developmentExpression of growth factors and signaling pathways in cancer cell proliferation

Key Characteristics

Resistant to ABT-73718q deletions associated with tumor suppressor gene inactivationUsed in studies of drug resistance mechanisms
Generated on 6/17/2025

Basic Information

Database IDCVCL_1591
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age41
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseLung small cell carcinoma
LineageLung
SubtypeSmall Cell Lung Cancer
OncoTree CodeSCLC

DepMap Information

Source TypeATCC
Source IDACH-000355_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene fusionMYH7PVT1-MYH7--from parent cell line NCI-H82
MutationSimpleTP53p.Thr125Thr (c.375G>T)UnspecifiedImpairs TP53 splicing dramaticallyfrom parent cell line NCI-H82

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D13S317
8
D16S539
12
D18S51
14,18
D19S433
13
D21S11
28,30
D2S1338
17,24
D3S1358
17
D5S818
12
D7S820
10,13
D8S1179
13
FGA
24,25
Penta D
10,12
Penta E
11,12
TH01
9,9.3
TPOX
11
vWA
14
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors.

Gazdar A.F., Minna J.D.

Oncogene 7:339-346(1992).

Neuromedin B is present in lung cancer cell lines.";

Giaccone G., Battey J., Gazdar A.F., Oie H.K., Draoui M., Moody T.W.

Cancer Res. 52:2732s-2736s(1992).

Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation.

Linnoila R.I.

Oncogene 7:743-749(1992).

Novel antigens characteristic of neuroendocrine malignancies.";

Boerman O.C., Ramaekers F.C.S.

Cancer 67:619-633(1991).

Metabolic activation of 4-ipomeanol in human lung, primary pulmonary carcinomas, and established human pulmonary carcinoma cell lines.

Adelberg S., Czerwinski M.J., McMahon N.A., Eggleston J.C., Boyd M.R.

J. Natl. Cancer Inst. 82:1420-1426(1990).

Spontaneous changes in intermediate filament protein expression patterns in lung cancer cell lines.

Carney D.N., Vooijs G.P., Ramaekers F.C.S.

J. Cell Sci. 91:91-108(1988).

Establishment and identification of small cell lung cancer cell lines having classic and variant features.

Moody T.W., Zweig M.H., Minna J.D.

Cancer Res. 45:2913-2923(1985).

Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties.

Gazdar A.F., Carney D.N., Nau M.M., Minna J.D.

Cancer Res. 45:2924-2930(1985).

Cytogenetics of human small cell lung cancer.";

Whang-Peng J., Lee E.C.

Recent Results Cancer Res. 97:37-46(1985).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Heterogeneity in the radiation survival curves and biochemical properties of human lung cancer cell lines.

Mitchell J.B.

J. Natl. Cancer Inst. 73:801-807(1984).

Monoclonal antibodies that demonstrate specificity for several types of human lung cancer.

Cuttitta F., Rosen S.T., Gazdar A.F., Minna J.D.

Proc. Natl. Acad. Sci. U.S.A. 78:4591-4595(1981).

Analysis of human small cell lung cancer differentiation antigens using a panel of rat monoclonal antibodies.

Gazdar A.F., Minna J.D.

Cancer Res. 44:2052-2061(1984).

Subcellular localization and supramolecular organization of neuroendocrine-specific protein B (NSP-B) in small cell lung cancer.

Kuijpers H.J.H., Roebroek A.J.M., van de Ven W.J.M., Ramaekers F.C.S.

Eur. J. Cell Biol. 65:341-353(1994).

Insulin-like growth factor expression in human cancer cell lines.";

Grimley C., Battey J., Mulshine J.L., Cuttitta F.

J. Biol. Chem. 271:11477-11483(1996).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

MYC family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer.

Ihde D.C., Gazdar A.F.

J. Cell. Biochem. Suppl. 24:210-217(1996).

Coexpression of transcripts encoding EPHB receptor protein tyrosine kinases and their ephrin-B ligands in human small cell lung carcinoma.

Tang X.X., Brodeur G.M., Campling B.G., Ikegaki N.

Clin. Cancer Res. 5:455-460(1999).

The ubiquitin-activating enzyme E1-like protein in lung cancer cell lines.

Brinker M.G.L., Ruiters M.H.J., de Leij L.F.M.H., Buys C.H.C.M.

Int. J. Cancer 85:871-876(2000).

Mutation and expression of the DCC gene in human lung cancer.";

Yokota J.

Neoplasia 2:300-305(2000).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H series analyzed with spectral karyotyping.

Grigorova M., Lyman R.C., Caldas C., Edwards P.A.W.

Cancer Genet. Cytogenet. 162:1-9(2005).

Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains.

Sauter G., Lesniewski R., Semizarov D.

Mol. Cancer Res. 5:331-339(2007).

A gene-alteration profile of human lung cancer cell lines.";

Montuenga L.M., Minna J.D., Yokota J., Sanchez-Cespedes M.

Hum. Mutat. 30:1199-1206(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Prevalence of human papillomavirus 16/18/33 infection and p53 mutation in lung adenocarcinoma.

Iwakawa R., Kohno T., Enari M., Kiyono T., Yokota J.

Cancer Sci. 101:1891-1896(2010).

Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors.

Lucchi M., Smith W.I. Jr., Meltzer P.S., Wang Y.-S., Giaccone G.

Proc. Natl. Acad. Sci. U.S.A. 107:13040-13045(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer.

Yokota J.

Genes Chromosomes Cancer 52:802-816(2013).

Analysis of TP53 mutation status in human cancer cell lines: a reassessment.

Soussi T.

Hum. Mutat. 35:756-765(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Web Resources