NCI-H889Homo sapiens (Human)Cancer cell line

Also known as: NCIH889, H-889, H889

🤖 AI SummaryBased on 14 publications

Quick Overview

Small cell lung cancer cell line with potential for drug sensitivity studies.

Detailed Summary

The NCI-H889 cell line is derived from a small cell lung cancer (SCLC) tumor and is widely used in cancer research. It exhibits specific genetic and molecular characteristics that make it valuable for studying SCLC biology and therapeutic responses. Research has shown that NCI-H889 is sensitive to certain chemotherapeutic agents and has been utilized in studies investigating the role of PARP1 and other targets in SCLC. Additionally, it has been part of studies examining the impact of genetic alterations on drug response and tumor progression. The cell line is also used in investigations related to the RB pathway and other key signaling pathways involved in cancer development.

Research Applications

Drug sensitivity studiesPARP1 target investigationRB pathway analysisGenetic alteration impact on drug response

Key Characteristics

SCLC originSensitivity to chemotherapeutic agentsPARP1 expressionRB pathway involvement
Generated on 6/17/2025

Basic Information

Database IDCVCL_1598
SpeciesHomo sapiens (Human)
Tissue SourceLymph node[UBERON:UBERON_0000029]

Donor Information

Age69
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseSmall cell lung cancer
LineageLung
SubtypeSmall Cell Lung Cancer
OncoTree CodeSCLC

DepMap Information

Source TypeATCC
Source IDACH-000297_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Cys242Ser (c.725G>C)HomozygousGermlinePubMed=31541927, PubMed=25275298, PubMed=23613873, PubMed=18487078, PubMed=18006756, PubMed=15287027, PubMed=12884349

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
11
D16S539
8
D18S51
13,18
D19S433
14,16.2
D21S11
31.2,33.2
D2S1338
18,19
D3S1358
16
D5S818
12
D7S820
8,9
D8S1179
10
FGA
22
Penta D
10,15
Penta E
7
TH01
8,9.3
TPOX
8,9
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

MicroRNA expression distinguishes SCLC from NSCLC lung tumor cells and suggests a possible pathological relationship between SCLCs and NSCLCs.

Gazdar A.F., Pertsemlidis A.

J. Exp. Clin. Cancer Res. 29:75.1-75.12(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains.

Sauter G., Lesniewski R., Semizarov D.

Mol. Cancer Res. 5:331-339(2007).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

Coexpression of transcripts encoding EPHB receptor protein tyrosine kinases and their ephrin-B ligands in human small cell lung carcinoma.

Tang X.X., Brodeur G.M., Campling B.G., Ikegaki N.

Clin. Cancer Res. 5:455-460(1999).

MYC family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer.

Ihde D.C., Gazdar A.F.

J. Cell. Biochem. Suppl. 24:210-217(1996).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

Insulin-like growth factor expression in human cancer cell lines.";

Grimley C., Battey J., Mulshine J.L., Cuttitta F.

J. Biol. Chem. 271:11477-11483(1996).

Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation.

Linnoila R.I.

Oncogene 7:743-749(1992).

High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors.

Gazdar A.F., Minna J.D.

Oncogene 7:339-346(1992).