NCI-H929Homo sapiens (Human)Cancer cell line

Also known as: H-929, H929, NCIH929, NCI H929

🤖 AI SummaryBased on 15 publications

Quick Overview

Human multiple myeloma cell line with B cell origin, used in cancer research.

Detailed Summary

The NCI-H929 cell line is a human multiple myeloma cell line derived from a B cell lineage. It is widely used in cancer research, particularly in studies related to multiple myeloma. This cell line has been characterized in various genomic and transcriptomic studies, showing specific mutations and gene expression profiles that are relevant to myeloma pathogenesis. Research on NCI-H929 has contributed to understanding the molecular mechanisms of myeloma, including the role of genetic alterations such as the t(4;14) translocation and mutations in genes like TP53 and MYC. It is also used to study the effects of therapeutic agents and to model tumor progression in vitro.

Research Applications

Cancer researchGenomic studiesTranscriptomic analysisDrug screeningMolecular mechanisms of myeloma

Key Characteristics

B cell originMultiple myelomat(4;14) translocationTP53 mutationsMYC mutations
Generated on 6/17/2025

Basic Information

Database IDCVCL_1600
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age62
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseMultiple myeloma
LineageLymphoid
SubtypePlasma Cell Myeloma
OncoTree CodePCM

DepMap Information

Source TypeATCC
Source IDACH-000050_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleNRASp.Gly13Asp (c.38G>A)Unspecified-PubMed=32014918

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D10S1248
13
D12S391
19.3
D13S317
12
D16S539
9,13
D18S51
15,18
D19S433
13,14
D1S1656
17.3
D21S11
28,29
D22S1045
15
D2S1338
17,19
D2S441
10,14
D3S1358
15
D5S818
11,12
D7S820
10,12
D8S1179
11,13
FGA
21,24
Penta D
12,13
Penta E
7,10
TH01
9.3
TPOX
8,11
vWA
14,15
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis.

Sirota M., Wiita A.P.

Leukemia 34:2754-2765(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways.

Pellat-Deceunynck C.

J. Hematol. Oncol. 11:137.1-137.13(2018).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines.

Moreau-Aubry A., Amiot M., Pellat-Deceunynck C.

Cytometry A 87:285-288(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines.

Pellat-Deceunynck C.

Haematologica 96:574-582(2011).

Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles.

Todoerti K., Ronchetti D., Lambertenghi-Deliliers G., Neri A.

Genes Chromosomes Cancer 48:521-531(2009).

An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma.

Fabris S., Lambertenghi-Deliliers G., Neri A.

BMC Med. Genomics 1:37.1-37.9(2008).

Characterization of MYC translocations in multiple myeloma cell lines.

Dib A., Gabrea A., Glebov O.K., Bergsagel P.L., Kuehl W.M.

J. Natl. Cancer Inst. Monogr. 39:25-31(2008).

Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.

Stewart A.K., Carpten J.D., Bergsagel P.L.

Cancer Cell 12:131-144(2007).

Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.

Lambertenghi-Deliliers G., Bertoni F., Neri A.

Genes Chromosomes Cancer 46:226-238(2007).

The phenotype of normal, reactive and malignant plasma cells. Identification of 'many and multiple myelomas' and of new targets for myeloma therapy.

Moreau P., Amiot M., Pellat-Deceunynck C.

Haematologica 91:1234-1240(2006).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma.

Kuehl W.M., Bergsagel P.L.

Blood 97:729-736(2001).

Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia.

Drexler H.G., Matsuo Y.

Leuk. Res. 24:681-703(2000).

Fluorescence in situ hybridization analysis shows the frequent occurrence of 14q32.3 rearrangements with involvement of immunoglobulin switch regions in myeloma cell lines.

Lokhorst H.M., Clevers H.C., Bast B.J.E.G.

Cancer Genet. Cytogenet. 109:99-107(1999).

Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma.

Kuehl W.M.

Proc. Natl. Acad. Sci. U.S.A. 93:13931-13936(1996).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

NCI series of cell lines: an historical perspective.";

Gazdar A.F., Minna J.D.

J. Cell. Biochem. 63 Suppl. 24:1-11(1996).

Complex translocation disrupts c-myc regulation in a human plasma cell myeloma.

Hollis G.F., Gazdar A.F., Bertness V.L., Kirsch I.R.

Mol. Cell. Biol. 8:124-129(1988).

Establishment and characterization of a human plasma cell myeloma culture having a rearranged cellular myc proto-oncogene.

Gazdar A.F., Oie H.K., Kirsch I.R., Hollis G.F.

Blood 67:1542-1549(1986).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).

Multiple myeloma cell lines.";

Jernberg-Wiklund H., Nilsson K.

(In book chapter) Human cell culture. Vol. 3. Cancer cell lines part 3; Masters J.R.W., Palsson B.O. (eds.); pp.81-155; Kluwer Academic Publishers; New York; USA (2000).

Web Resources