NUGC-3Homo sapiens (Human)Cancer cell line

Also known as: Nagoya University-Gastric Cancer-3, NU-GC-3, NUGC3, MUGC-3, NVGC3

🤖 AI SummaryBased on 13 publications

Quick Overview

Human gastric cancer cell line with known genetic alterations.

Detailed Summary

NUGC-3 is a human gastric cancer cell line derived from a poorly differentiated adenocarcinoma. It is commonly used in cancer research to study genetic alterations and their implications in tumor progression. The cell line has been characterized in multiple studies for its genomic and transcriptomic profiles, including mutations and copy number variations. Research on NUGC-3 has contributed to understanding the molecular mechanisms underlying gastric cancer, particularly in relation to specific gene alterations and their impact on cell behavior and drug sensitivity.
Generated on 6/17/2025

Basic Information

Database IDCVCL_1612
SpeciesHomo sapiens (Human)
Tissue SourceBrachialis muscle[UBERON:UBERON_0001506]

Donor Information

Age72
Age CategoryAdult
SexMale

Disease Information

DiseaseGastric adenocarcinoma
LineageEsophagus/Stomach
SubtypeStomach Adenocarcinoma
OncoTree CodeSTAD

DepMap Information

Source TypeJCRB
Source IDACH-000911_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Tyr220Cys (c.659A>G)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
13
D13S317
10,11
D16S539
10,11
D18S51
18,19
D21S11
30,31
D3S1358
16,17
D5S818
11
D7S820
8,9
D8S1179
12,13,16,17
FGA
17
Penta D
11
Penta E
11,18
TH01
6,8
TPOX
8,9
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.

Kragh M., Horak I.D., Chung H.C., Rha S.Y.

Int. J. Cancer 143:151-159(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.

Yang H.H., Lee M.A.

PLoS ONE 9:E111146-E111146(2014).

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.

Firestein R., Zhang Z.-M.

Nat. Commun. 5:3830.1-3830.8(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Absence of the AKT1 pleckstrin homology domain mutation in Japanese gastrointestinal and liver cancer patients.

Omata M.

APMIS 116:931-933(2008).

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Yamori T.

Mol. Cancer Ther. 4:399-412(2005).

Screening of DNA copy-number aberrations in gastric cancer cell lines by array-based comparative genomic hybridization.

Okanoue T., Inazawa J.

Cancer Sci. 96:100-110(2005).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

A stomach oncofetal antigen recognized by monoclonal antibody GC302.

Ichihashi H., Ozawa T., Kondo T., Takagi H.

Jpn. J. Surg. 17:507-516(1987).

Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4.

Imaizumi M., Ichihashi H., Kondo T., Takagi H.

Jpn. J. Surg. 18:438-446(1988).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Missense mutations and a deletion of the p53 gene in human gastric cancer.

Wada K., Uchida T., Nishisaki H., Nagao M., Kasuga M.

Biochem. Biophys. Res. Commun. 182:215-223(1992).

Web Resources