OPM-2Homo sapiens (Human)Cancer cell line
Also known as: OPM2
Quick Overview
Human multiple myeloma cell line with B-cell origin, used in cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1625 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Peripheral blood[UBERON:UBERON_0000178] |
Donor Information
Age | 56 |
---|---|
Age Category | Adult |
Sex | Female |
Disease Information
Disease | Multiple myeloma |
---|---|
Lineage | Lymphoid |
Subtype | Plasma Cell Myeloma |
OncoTree Code | PCM |
DepMap Information
Source Type | DSMZ |
---|---|
Source ID | ACH-000024_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Arg175His (c.524G>A) | Unspecified | Somatic mutation acquired during proliferation | from parent cell line YCC-3 |
MutationSimple | SMAD2 | p.Leu87Arg (c.260T>G) | Heterozygous | - | from parent cell line OPM-2 |
MutationSimple | FGFR3 | p.Lys650Glu (c.1948A>G) | Heterozygous | - | from parent cell line OPM-2 |
MutationSimple | CDKN2A | p.His83Tyr (c.247C>T) (p.Ala97Val, c.290C>T) | Unspecified | - | PubMed=11787853 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis.
Sirota M., Wiita A.P.
Leukemia 34:2754-2765(2020).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
The LL-100 panel: 100 cell lines for blood cancer studies.";
MacLeod R.A.F., Nagel S., Steube K.G., Uphoff C.C., Drexler H.G.
Sci. Rep. 9:8218-8218(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways.
Pellat-Deceunynck C.
J. Hematol. Oncol. 11:137.1-137.13(2018).
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
Yang H.H., Koeffler H.P.
BMC Cancer 18:940.1-940.13(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines.
Moreau-Aubry A., Amiot M., Pellat-Deceunynck C.
Cytometry A 87:285-288(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines.
Pellat-Deceunynck C.
Haematologica 96:574-582(2011).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles.
Todoerti K., Ronchetti D., Lambertenghi-Deliliers G., Neri A.
Genes Chromosomes Cancer 48:521-531(2009).
An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma.
Fabris S., Lambertenghi-Deliliers G., Neri A.
BMC Med. Genomics 1:37.1-37.9(2008).
Characterization of MYC translocations in multiple myeloma cell lines.
Dib A., Gabrea A., Glebov O.K., Bergsagel P.L., Kuehl W.M.
J. Natl. Cancer Inst. Monogr. 39:25-31(2008).
Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.
Stewart A.K., Carpten J.D., Bergsagel P.L.
Cancer Cell 12:131-144(2007).
Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.
Lambertenghi-Deliliers G., Bertoni F., Neri A.
Genes Chromosomes Cancer 46:226-238(2007).
The phenotype of normal, reactive and malignant plasma cells. Identification of 'many and multiple myelomas' and of new targets for myeloma therapy.
Moreau P., Amiot M., Pellat-Deceunynck C.
Haematologica 91:1234-1240(2006).
Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma.
Taniwaki M., Inazawa J.
Am. J. Pathol. 165:71-81(2004).
Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma.
Kuehl W.M., Bergsagel P.L.
Blood 97:729-736(2001).
Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia.
Drexler H.G., Matsuo Y.
Leuk. Res. 24:681-703(2000).
Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells.";
Bataille F.-R., Amiot M.
Br. J. Haematol. 107:392-395(1999).
Fluorescence in situ hybridization analysis shows the frequent occurrence of 14q32.3 rearrangements with involvement of immunoglobulin switch regions in myeloma cell lines.
Lokhorst H.M., Clevers H.C., Bast B.J.E.G.
Cancer Genet. Cytogenet. 109:99-107(1999).
Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma.
Kuehl W.M.
Proc. Natl. Acad. Sci. U.S.A. 93:13931-13936(1996).
Two distinct human myeloma cell lines originating from one patient with myeloma.
Tamaki T., Ohnishi M., Tarui S.
Int. J. Cancer 36:241-246(1985).
The leukemia-lymphoma cell line factsbook.";
Drexler H.G.
(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).
Multiple myeloma cell lines.";
Jernberg-Wiklund H., Nilsson K.
(In book chapter) Human cell culture. Vol. 3. Cancer cell lines part 3; Masters J.R.W., Palsson B.O. (eds.); pp.81-155; Kluwer Academic Publishers; New York; USA (2000).