OVCAR-4Homo sapiens (Human)Cancer cell line

Also known as: OVCAR 4, NIH:OVCAR-4, NIH:OVCAR4, OVCAR.4, OVCAR4, Ovcar4

🤖 AI SummaryBased on 16 publications

Quick Overview

OVCAR-4 is a human ovarian cancer cell line used in cancer research.

Detailed Summary

OVCAR-4 is a human ovarian cancer cell line derived from a patient with ovarian carcinoma. It is widely used in research to study ovarian cancer biology, drug resistance mechanisms, and therapeutic strategies. The cell line has been characterized for its response to various chemotherapeutic agents, including cisplatin and paclitaxel. OVCAR-4 is part of the NCI-60 panel, a set of 60 cancer cell lines used for drug screening and molecular profiling. Research on OVCAR-4 has contributed to understanding the genetic and molecular alterations associated with ovarian cancer progression and treatment resistance.

Research Applications

Cancer drug screeningMolecular profilingDrug resistance mechanismsOvarian cancer biology

Key Characteristics

Part of NCI-60 panelUsed in chemotherapeutic response studiesCharacterized for genetic alterations
Generated on 6/17/2025

Basic Information

Database IDCVCL_1627
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age42
Age CategoryAdult
SexFemale

Disease Information

DiseaseHigh grade ovarian serous adenocarcinoma
LineageOvary/Fallopian Tube
SubtypeHigh-Grade Serous Ovarian Cancer
OncoTree CodeHGSOC

DepMap Information

Source TypeAcademic lab
Source IDACH-000617_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Leu130Val (c.388C>G)Homozygous-PubMed=27311012

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D10S1248
13,15
D12S391
23
D13S317
9
D16S539
11
D18S51
15
D19S433
13,15
D1S1656
15
D21S11
28,31
D22S1045
11,15
D2S1338
23
D2S441
10,15
D3S1358
15
D5S818
13
D7S820
10,11
D8S1179
13
FGA
21
Penta D
12,14
Penta E
11
TH01
9
TPOX
8
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice.

Herodek B., Arteagabeitia A.B., Valenti M., Kirkin V.

Sci. Rep. 10:10799-10799(2020).

High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis.

Anderson M.E.

Proc. Natl. Acad. Sci. U.S.A. 89:3070-3074(1992).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Metallothionein gene expression and resistance to cisplatin in human ovarian cancer.

Ozols R.F., Fojo A., Hamilton T.C.

Int. J. Cancer 45:416-422(1990).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Characterization of immunotoxins active against ovarian cancer cell lines.

Frankel A.E., Willingham M.C., Pastan I.

J. Clin. Invest. 76:1261-1267(1985).

Reversal of adriamycin resistance by verapamil in human ovarian cancer.

Rogan A.M., Hamilton T.C., Young R.C., Klecker R.W. Jr., Ozols R.F.

Science 224:994-996(1984).

Experimental model systems of ovarian cancer: applications to the design and evaluation of new treatment approaches.

Hamilton T.C., Young R.C., Ozols R.F.

Semin. Oncol. 11:285-298(1984).

Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

van Zijl P.L.

Eur. J. Cancer 31A:230-237(1995).

Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines.

Johnson S.W., Laub P.B., Beesley J.S., Ozols R.F., Hamilton T.C.

Cancer Res. 57:850-856(1997).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential.

Auersperg N., Birrer M.J.

Oncogene 21:4435-4447(2002).

Gene expression patterns in ovarian carcinomas.";

Sikic B.I.

Mol. Biol. Cell 14:4376-4386(2003).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.

Noonan A.M., Annunziata C.M.

Gynecol. Oncol. 142:332-340(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).