OVCAR-8Homo sapiens (Human)Cancer cell line

Also known as: OVCAR 8, NIH:OVCAR-8, OVCAR8, Ovcar8, OVCAR.8, OVCA8, OVOCAR8 (Occasionally.), OVOCAR-8 (Occasionally.), OVACAR8

🤖 AI SummaryBased on 14 publications

Quick Overview

Ovarian cancer cell line with resistance to platinum-based therapies.

Detailed Summary

OVCAR-8 is a human ovarian cancer cell line derived from a patient with high-dose carboplatin-refractory ovarian cancer. It exhibits significant resistance to platinum-based chemotherapies, with a resistance factor of 30-1000-fold. This cell line is commonly used in studies investigating mechanisms of drug resistance, particularly in the context of cisplatin and carboplatin. Research on OVCAR-8 has focused on understanding the molecular basis of resistance, including alterations in glutathione synthesis and other cellular pathways. It is also utilized in preclinical studies to evaluate the efficacy of novel therapeutic agents and to explore the genetic and epigenetic changes associated with drug resistance. OVCAR-8 is part of a panel of cell lines used for comprehensive genomic and expression analyses to identify potential therapeutic targets and biomarkers.

Research Applications

Drug resistance mechanismsPlatinum-based chemotherapy resistanceGenomic and expression profilingPreclinical drug testingBiomarker discovery

Key Characteristics

High resistance to cisplatin and carboplatinUsed in studies of glutathione synthesis and drug resistancePart of the NCI-60 panel for genomic analysis
Generated on 6/17/2025

Basic Information

Database IDCVCL_1629
SpeciesHomo sapiens (Human)

Donor Information

Age64
Age CategoryAdult
SexFemale

Disease Information

DiseaseHigh grade ovarian serous adenocarcinoma
LineageOvary/Fallopian Tube
SubtypeHigh-Grade Serous Ovarian Cancer
OncoTree CodeHGSOC

DepMap Information

Source TypeAcademic lab
Source IDACH-000696_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleCTNNB1p.Gln26Arg (c.77A>G)Heterozygous-from parent cell line OVCAR-8
MutationSimpleERBB2p.Gly776Val (c.2327G>T)Heterozygous-from parent cell line OVCAR-8
MutationSimpleKRASp.Pro121His (c.362C>A)Heterozygous-from parent cell line OVCAR-8
MutationSimpleTP53c.376-1G>A (p.Tyr126_Lys132del, c.376_396del21)UnspecifiedSplice acceptor mutationfrom parent cell line U-1285

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D10S1248
14
D12S391
15,18
D13S317
12
D16S539
13
D18S51
14
D19S433
14,16
D1S1656
19.3
D21S11
28
D22S1045
11
D2S1338
19,23
D2S441
10,11
D3S1358
16,18
D5S818
12
D7S820
12
D8S1179
10
FGA
20
Penta D
12
Penta E
10
TH01
7
TPOX
8
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.

Noonan A.M., Annunziata C.M.

Gynecol. Oncol. 142:332-340(2016).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Interrogation of functional cell-surface markers identifies CD151 dependency in high-grade serous ovarian cancer.

Drapkin R.I., Ailles L., Mes-Masson A.-M., Rottapel R.

Cell Rep. 18:2343-2358(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

STR profiling of human cell lines: challenges and possible solutions to the growing problem.

Hart R.P., Furtado M.R.

J. Forensic Res. 2 Suppl. 2:5-5(2011).

High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis.

Anderson M.E.

Proc. Natl. Acad. Sci. U.S.A. 89:3070-3074(1992).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Metallothionein gene expression and resistance to cisplatin in human ovarian cancer.

Ozols R.F., Fojo A., Hamilton T.C.

Int. J. Cancer 45:416-422(1990).

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Cancer Res. 48:589-601(1988).

Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

van Zijl P.L.

Eur. J. Cancer 31A:230-237(1995).

Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines.

Johnson S.W., Laub P.B., Beesley J.S., Ozols R.F., Hamilton T.C.

Cancer Res. 57:850-856(1997).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.

Takayama M., Sato A., Inazawa J.

Jpn. J. Cancer Res. 93:1114-1122(2002).

Gene expression patterns in ovarian carcinomas.";

Sikic B.I.

Mol. Biol. Cell 14:4376-4386(2003).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities.

Long S.B.T., Vonguyen L., Chen D.J., Gray J.W., Chen F.-Q.

Oncol. Rep. 23:1021-1026(2010).

Therapeutic reactivation of mutant p53 protein by quinazoline derivatives.

Ding A., Baguley B.C.

Invest. New Drugs 30:2035-2045(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

Lessey B.A., Jordan V.C., Bradford A.P.

Gynecol. Oncol. 127:241-248(2012).

BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

Mills G.B., Hennessy B.T.

Mol. Oncol. 7:567-579(2013).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).