Panc 03.27Homo sapiens (Human)Cancer cell line
Also known as: PL-11, PL11, Panc0327, PANC0327, Panc327, PANC 327, Panc-327, Panc3_27, Panc3.27, PANC3.27, Panc-3_27, Panc_03_27, PANC-03-27, Panc-03.27, Panc 3.27
Quick Overview
Human pancreatic cancer cell line with metabolic and genetic characteristics.
Detailed Summary
Basic Information
Database ID | CVCL_1635 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pancreas[UBERON:UBERON_0001264] |
Donor Information
Age | 65 |
---|---|
Age Category | Adult |
Sex | Female |
Race | caucasian |
Disease Information
Disease | Pancreatic adenocarcinoma |
---|---|
Lineage | Pancreas |
Subtype | Pancreatic Adenocarcinoma |
OncoTree Code | PAAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000139_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | c.375+5G>T | Homozygous | - | Unknown |
MutationSimple | KRAS | p.Gly12Val (c.35G>T) | Heterozygous | Acquired | Unknown, Unknown |
MutationUnexplicit | FANCC | Ex7-14 | Homozygous | - | PubMed=19305140 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.
Nat. Commun. 10:3574.1-3574.11(2019).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Differential effector engagement by oncogenic KRAS.";
McCormick F.
Cell Rep. 22:1889-1902(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.
Biankin A.V., Wu J.-M., Daly R.J.
Mol. Cell. Proteomics 15:2671-2685(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.
Manning G., Settleman J., Hatzivassiliou G., Evangelista M.
Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.
Linnartz R., Zubel A., Slamon D.J., Finn R.S.
Br. J. Cancer 111:1788-1801(2014).
Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
Rottapel R., Neel B.G., Moffat J.
Cancer Discov. 2:172-189(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.
Mendell J.T.
Cancer Biol. Ther. 8:2013-2024(2009).
Hybrids of aneuploid human cancer cells permit complementation of simple and complex cancer defects.
Chakravarti A., Kern S.E.
Cancer Biol. Ther. 8:347-355(2009).
Molecular cytogenetic characterization of pancreas cancer cell lines reveals high complexity chromosomal alterations.
Ried T., Schrock E., Perlman E.J., Jaffee E.M.
Cytogenet. Genome Res. 118:148-156(2007).
Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.
Kern S.E.
Cancer Res. 66:7920-7928(2006).
Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
Kern S.E., Goggins M.G., Hruban R.H.
Cancer Res. 63:8614-8622(2003).
Development and characterization of a cytokine-secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials.
Thomas M., Greten T.F., Hruban R.H., Yeo C.J., Griffin C.A.
Cancer J. Sci. Am. 4:194-203(1998).