Panc 10.05Homo sapiens (Human)Cancer cell line

Also known as: PL-12, PL12, Pa16C, Panc1005, PANC1005, PANC 1005, PANC-10-05, Panc10.05, Panc-10.05

🤖 AI SummaryBased on 9 publications

Quick Overview

Human pancreatic cancer cell line with known genetic alterations

Detailed Summary

Panc 10.05 is a human pancreatic cancer cell line derived from a pancreatic tumor. It is characterized by specific genetic alterations, including gains and losses in chromosomal regions associated with pancreatic cancer progression. This cell line has been used in studies to investigate the molecular mechanisms underlying pancreatic cancer and to evaluate the efficacy of various chemotherapeutic agents. Research on Panc 10.05 has contributed to understanding the genetic complexity of pancreatic cancer and has been utilized in studies related to drug sensitivity and metabolic profiling.

Research Applications

Molecular cytogenetic analysisChemotherapy sensitivity testingMetabolic profilingGenetic subset identification

Key Characteristics

Chromosomal abnormalities associated with pancreatic cancerGenetic alterations in key cancer genesSensitivity to specific chemotherapeutic agentsMetabolic dependencies
Generated on 6/17/2025

Basic Information

Database IDCVCL_1639
SpeciesHomo sapiens (Human)
Tissue SourcePancreas[UBERON:UBERON_0001264]

Donor Information

Age81
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseasePancreatic ductal adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000060_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Ile255Asn (c.764T>A)Homozygous-from autologous cell line Panc 10.05
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D12S391
17,20
D13S317
12
D16S539
9,12
D18S51
15
D19S433
13,14
D21S11
30
D2S1338
17,18
D3S1358
14
D5S818
13
D6S1043
17
D7S820
8,9
D8S1179
13,14
FGA
20
Penta D
12
Penta E
11,13
TH01
6,9.3
TPOX
11
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

Genetically defined subsets of human pancreatic cancer show unique in vitro chemosensitivity.

Iacobuzio-Donahue C.A., Eshleman J.R.

Clin. Cancer Res. 18:6519-6530(2012).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Molecular cytogenetic characterization of pancreas cancer cell lines reveals high complexity chromosomal alterations.

Ried T., Schrock E., Perlman E.J., Jaffee E.M.

Cytogenet. Genome Res. 118:148-156(2007).

Development and characterization of a cytokine-secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials.

Thomas M., Greten T.F., Hruban R.H., Yeo C.J., Griffin C.A.

Cancer J. Sci. Am. 4:194-203(1998).