PSN1Homo sapiens (Human)Cancer cell line

Also known as: PSN-1

🤖 AI SummaryBased on 14 publications

Quick Overview

Human pancreatic adenocarcinoma cell line with c-Ki-ras and c-myc amplifications.

Detailed Summary

PSN1 is a human pancreatic adenocarcinoma cell line established from a primary tumor and metastatic lymph nodes. It exhibits amplifications of both c-myc and activated c-Ki-ras with a point mutation at codon 12. These genetic alterations are associated with increased oncogenic potential and are linked to tumor progression. The cell line maintains the genetic characteristics of the original tumor, making it a valuable model for studying pancreatic cancer mechanisms and therapeutic responses.

Research Applications

Cancer geneticsOncogene amplification studiesDrug sensitivity testingTumor progression modeling

Key Characteristics

Amplification of c-mycActivated c-Ki-ras with point mutation at codon 12Maintenance of original tumor genetic profile
Generated on 6/17/2025

Basic Information

Database IDCVCL_1644
SpeciesHomo sapiens (Human)
Tissue SourcePancreas[UBERON:UBERON_0001264]

Donor Information

Age36
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseasePancreatic adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeECACC
Source IDACH-000320_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Lys132Gln (c.394A>C)Unspecified-from parent cell line Jiyoye
MutationSimpleKRASp.Gly12Arg (c.34G>C)Unspecified-PubMed=26124327
Gene deletionSMAD4-Homozygous-from parent cell line BxPC-3
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D13S317
10
D16S539
10,11
D18S51
21
D21S11
29,30
D3S1358
15,17
D5S818
11,13
D7S820
10
D8S1179
10,14
FGA
23
Penta D
9,12
Penta E
14,15
TH01
6
TPOX
8,11
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.

Lohr J.-M., Scarpa A.

Virchows Arch. 439:798-802(2001).

Establishment of a human pancreatic adenocarcinoma cell line (PSN-1) with amplifications of both c-myc and activated c-Ki-ras by a point mutation.

Yamada H., Yoshida T., Sakamoto H., Terada M., Sugimura T.

Biochem. Biophys. Res. Commun. 140:167-173(1986).

Amplifications of both c-Ki-ras with a point mutation and c-myc in a primary pancreatic cancer and its metastatic tumors in lymph nodes.

Terada M., Sugimura T.

Jpn. J. Cancer Res. 77:370-375(1986).

Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.

Lane D.P., Lemoine N.R.

Br. J. Cancer 64:1076-1082(1991).

Web Resources