Rh18Homo sapiens (Human)Cancer cell line

Also known as: SJRH18, SJRH-18, Rh 18, Rh-18, RH-18, RH18

🤖 AI SummaryBased on 12 publications

Quick Overview

Human rhabdomyosarcoma cell line with alveolar subtype characteristics.

Detailed Summary

Rh18 is a human rhabdomyosarcoma cell line derived from an alveolar subtype tumor. It exhibits the characteristic t(2;13)(q35;q14) chromosomal translocation, which results in the PAX3-FKHR fusion gene. This cell line is commonly used in research to study the molecular mechanisms of alveolar rhabdomyosarcoma, including the role of the PAX3-FKHR fusion protein in tumorigenesis. Rh18 has been utilized in drug screening studies to evaluate the efficacy of various anticancer agents, particularly those targeting pathways associated with the fusion gene. The cell line is also employed in studies investigating the genetic and epigenetic alterations that contribute to the aggressive behavior of alveolar rhabdomyosarcoma.

Research Applications

Molecular mechanisms of alveolar rhabdomyosarcomaDrug screening for anticancer agentsGenetic and epigenetic alterations in tumorigenesis

Key Characteristics

PAX3-FKHR fusion genet(2;13)(q35;q14) chromosomal translocationAlveolar subtypeUsed in drug response studies
Generated on 6/17/2025

Basic Information

Database IDCVCL_1659
SpeciesHomo sapiens (Human)
Tissue SourcePerineus, muscle[UBERON:UBERON_0002379]

Donor Information

Age2
Age CategoryPediatric
SexFemale

Disease Information

DiseaseAlveolar rhabdomyosarcoma
LineageSoft Tissue
SubtypeEmbryonal Rhabdomyosarcoma
OncoTree CodeERMS

DepMap Information

Source TypeDSMZ
Source IDACH-000689_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationNone reportedTP53---PubMed=19787792
Gene fusionFOXO1PAX3-FOXO1, PAX3-FKHR-Not found in original tumorfrom parent cell line Rh30

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
12
D16S539
9,12
D18S51
16,17
D19S433
12,14
D21S11
32.2,33.2
D2S1338
19,24
D3S1358
16
D5S818
12
D7S820
8,10
D8S1179
13,15
FGA
23
Penta D
7,12
Penta E
8,13
TH01
7
TPOX
8,9
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Surfaceome profiling of cell lines and patient-derived xenografts confirm FGFR4, NCAM1, CD276, and highlight AGRL2, JAM3, and L1CAM as surface targets for rhabdomyosarcoma.

Sala R., Heller M., Rossler J., Bernasconi M.

Int. J. Mol. Sci. 24:2601.1-2601.28(2023).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Assessing alveolar rhabdomyosarcoma cell lines as tumor models by comparison of mRNA expression profiles.

Batchu S., Kellish A.S., Hakim A.A.

Gene 760:145025.1-145025.5(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Sarcoma cell line screen of oncology drugs and investigational agents identifies patterns associated with gene and microRNA expression.

Harris E., Monks A., Morris J.

Mol. Cancer Ther. 14:2452-2462(2015).

Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls.

Linardic C.M.

Front. Oncol. 3:183.1-183.12(2013).

Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array.

Ogawa S.

Cancer Sci. 104:856-864(2013).

National Cancer Institute pediatric preclinical testing program: model description for in vitro cytotoxicity testing.

Reynolds C.P.

Pediatr. Blood Cancer 56:239-249(2011).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development.

Pritchard-Jones K., Kool M., Shipley J.M.

Genes Chromosomes Cancer 48:455-467(2009).

Pediatric rhabdomyosarcoma cell lines are resistant to Fas-induced apoptosis and highly sensitive to TRAIL-induced apoptosis.

Petak I., Douglas L., Tillman D.M., Vernes R., Houghton J.A.

Clin. Cancer Res. 6:4119-4127(2000).

Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays.

Smith P.D., Jiang Y., Gooden G.C., Trent J.M., Meltzer P.S.

Cancer Res. 58:5009-5013(1998).

Bax is an important determinant of chemosensitivity in pediatric tumor cell lines independent of Bcl-2 expression and p53 status.

Harris L.C.

Oncol. Res. 10:235-244(1998).

Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis.

Tapscott S.J., Thayer M.J., Weintraub H.M.

Science 259:1450-1453(1993).

Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma.

Rauscher F.J. 3rd, Emanuel B.S., Rovera G., Barr F.G.

Nat. Genet. 5:230-235(1993).

Detection of the t(2;13)(q35;q14) and PAX3-FKHR fusion in alveolar rhabdomyosarcoma by fluorescence in situ hybridization.

Biegel J.A., Nycum L.M., Valentine V.A., Barr F.G., Shapiro D.N.

Genes Chromosomes Cancer 12:186-192(1995).

Growth and characterization of childhood rhabdomyosarcomas as xenografts.

Houghton J.A., Houghton P.J., Webber B.L.

J. Natl. Cancer Inst. 68:437-443(1982).

Characterization of cell lines derived from xenografts of childhood rhabdomyosarcoma.

Torrance P.M., Holt H., Houghton P.J.

Cancer Res. 47:4501-4507(1987).