RMG-IHomo sapiens (Human)Cancer cell line
Also known as: RMG-1, RMG1, RMGI
Quick Overview
RMG-I is a human ovarian clear cell carcinoma cell line with PIK3CA mutation, used for cancer research.
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1662 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Ascites[UBERON:UBERON_0007795] |
Donor Information
Age | 34 |
---|---|
Age Category | Adult |
Sex | Female |
Disease Information
Disease | Clear cell adenocarcinoma of the ovary |
---|---|
Lineage | Ovary/Fallopian Tube |
Subtype | Clear Cell Ovarian Cancer |
OncoTree Code | CCOV |
DepMap Information
Source Type | HSRRB |
---|---|
Source ID | ACH-000719_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationNone reported | TP53 | - | - | - | PubMed=19787792 |
MutationSimple | TERT | c.1-124C>T (c.228C>T) (C228T) | Unspecified | In promoter | from parent cell line Hep-G2 |
MutationSimple | CDKN2A | p.Arg58Arg (c.174A>C) (p.Ser73Arg, c.217A>C) | Unspecified | - | PubMed=25846456 |
Gene deletion | CDKN2A | - | Homozygous | Possible | PubMed=26870271 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.
Velculescu V.E., Scharpf R.B.
Cell Rep. 25:2617-2633(2018).
Interrogation of functional cell-surface markers identifies CD151 dependency in high-grade serous ovarian cancer.
Drapkin R.I., Ailles L., Mes-Masson A.-M., Rottapel R.
Cell Rep. 18:2343-2358(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
OncoImmunology 3:e954893.1-e954893.12(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Profiling of actionable gene alterations in ovarian cancer by targeted deep sequencing.
Ichikawa H., Shibata T., Yokota J., Okamoto A., Kohno T.
Int. J. Oncol. 46:2389-2398(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
Type-specific cell line models for type-specific ovarian cancer research.
Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.
PLoS ONE 8:E72162-E72162(2013).
Evaluating cell lines as tumour models by comparison of genomic profiles.
Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.
Nat. Commun. 4:2126.1-2126.10(2013).
Establishment and characterization of a novel ovarian clear cell adenocarcinoma cell line, TU-OC-1, with a mutation in the PIK3CA gene.
Kigawa J., Harada T.
Hum. Cell 26:121-127(2013).
Clinicopathologic and biological analysis of PIK3CA mutation in ovarian clear cell carcinoma.
Miyazaki K.
Hum. Pathol. 43:2197-2206(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer.";
Anderson M.L., Matzuk M.M.
Mol. Endocrinol. 24:447-463(2010).
Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer.
Hirohashi S., Inazawa J., Imoto I.
Cancer Res. 67:7095-7105(2007).
Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.
Takayama M., Sato A., Inazawa J.
Jpn. J. Cancer Res. 93:1114-1122(2002).
A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization.
Sato A., Inazawa J.
Gynecol. Oncol. 81:172-177(2001).
Inactivation of p16/CDKN2 and p15/MTS2 genes in different histological types and clinical stages of primary ovarian tumors.
Tsunoda H., Kubo T., Miwa M., Uchida K.
Int. J. Cancer 69:466-470(1996).
Establishment of a human ovarian clear cell carcinoma cell line (RMG-I) and its single cell cloning -- with special reference to the stem cell of the tumor.
Nozawa S., Tsukazaki K., Sakayori M., Jeng C.-H., Iizuka R.
Hum. Cell 1:426-435(1988).