RMG-IHomo sapiens (Human)Cancer cell line

Also known as: RMG-1, RMG1, RMGI

🤖 AI SummaryBased on 15 publications

Quick Overview

RMG-I is a human ovarian clear cell carcinoma cell line with PIK3CA mutation, used for cancer research.

Detailed Summary

RMG-I is a human ovarian clear cell carcinoma cell line established from a patient with ovarian clear cell adenocarcinoma. It exhibits a polygonal-shaped morphology and grows in monolayers without contact inhibition. The cell line has a low proliferation rate and shows resistance to cisplatin but sensitivity to paclitaxel. RMG-I harbors a PIK3CA mutation at codon 542 (E542K), which is a known hot spot in ovarian clear cell carcinomas. This mutation is associated with activation of the PI3K/Akt signaling pathway, making RMG-I a valuable model for studying the molecular mechanisms of ovarian cancer and developing targeted therapies. The cell line is also used to investigate chemosensitivity and resistance patterns in ovarian cancer.

Research Applications

Cancer researchMolecular mechanisms of ovarian cancerTargeted therapy developmentChemosensitivity and resistance studies

Key Characteristics

PIK3CA mutation at codon 542 (E542K)Low proliferation rateResistance to cisplatinSensitivity to paclitaxelMonolayer growth without contact inhibition
Generated on 6/17/2025

Basic Information

Database IDCVCL_1662
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age34
Age CategoryAdult
SexFemale

Disease Information

DiseaseClear cell adenocarcinoma of the ovary
LineageOvary/Fallopian Tube
SubtypeClear Cell Ovarian Cancer
OncoTree CodeCCOV

DepMap Information

Source TypeHSRRB
Source IDACH-000719_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationNone reportedTP53---PubMed=19787792
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleCDKN2Ap.Arg58Arg (c.174A>C) (p.Ser73Arg, c.217A>C)Unspecified-PubMed=25846456
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
8,12
D16S539
9,10
D18S51
13,15
D21S11
29,30
D3S1358
15,16
D5S818
12
D7S820
11
D8S1179
15,16
FGA
25,26
Penta D
9,10
Penta E
15,16
TH01
6,7
TPOX
11
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Interrogation of functional cell-surface markers identifies CD151 dependency in high-grade serous ovarian cancer.

Drapkin R.I., Ailles L., Mes-Masson A.-M., Rottapel R.

Cell Rep. 18:2343-2358(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

OncoImmunology 3:e954893.1-e954893.12(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Profiling of actionable gene alterations in ovarian cancer by targeted deep sequencing.

Ichikawa H., Shibata T., Yokota J., Okamoto A., Kohno T.

Int. J. Oncol. 46:2389-2398(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

Establishment and characterization of a novel ovarian clear cell adenocarcinoma cell line, TU-OC-1, with a mutation in the PIK3CA gene.

Kigawa J., Harada T.

Hum. Cell 26:121-127(2013).

Clinicopathologic and biological analysis of PIK3CA mutation in ovarian clear cell carcinoma.

Miyazaki K.

Hum. Pathol. 43:2197-2206(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer.";

Anderson M.L., Matzuk M.M.

Mol. Endocrinol. 24:447-463(2010).

Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer.

Hirohashi S., Inazawa J., Imoto I.

Cancer Res. 67:7095-7105(2007).

Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.

Takayama M., Sato A., Inazawa J.

Jpn. J. Cancer Res. 93:1114-1122(2002).

A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization.

Sato A., Inazawa J.

Gynecol. Oncol. 81:172-177(2001).

Inactivation of p16/CDKN2 and p15/MTS2 genes in different histological types and clinical stages of primary ovarian tumors.

Tsunoda H., Kubo T., Miwa M., Uchida K.

Int. J. Cancer 69:466-470(1996).

Establishment of a human ovarian clear cell carcinoma cell line (RMG-I) and its single cell cloning -- with special reference to the stem cell of the tumor.

Nozawa S., Tsukazaki K., Sakayori M., Jeng C.-H., Iizuka R.

Hum. Cell 1:426-435(1988).

Web Resources