SBC-5Homo sapiens (Human)Cancer cell line

Also known as: SBC5

🤖 AI SummaryBased on 12 publications

Quick Overview

SBC-5 is a human lung cancer cell line used in research for studying small cell lung cancer (SCLC) and its genetic alterations.

Detailed Summary

SBC-5 is a human lung cancer cell line derived from small cell lung carcinoma (SCLC). It is widely used in research to investigate genetic and molecular mechanisms underlying SCLC progression and drug resistance. Studies have shown that SBC-5 exhibits specific mutations and gene expression profiles that contribute to its tumorigenic properties. This cell line is particularly valuable for understanding the role of tumor suppressor genes and oncogenes in SCLC. Additionally, SBC-5 has been utilized in studies examining the effects of chemotherapy and targeted therapies on cancer cell proliferation and survival. Its characteristics make it a critical model for preclinical studies in lung cancer research.

Research Applications

Small cell lung cancer (SCLC) researchGenetic and molecular mechanism studiesDrug resistance and chemotherapy responseTumor suppressor gene and oncogene analysis

Key Characteristics

Expresses specific mutations associated with SCLCUsed for studying gene expression profilesValuable for preclinical drug testing
Generated on 6/17/2025

Basic Information

Database IDCVCL_1679
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age65
Age CategoryAdult
SexMale

Disease Information

DiseaseThoracic SMARCA4-deficient undifferentiated tumor
LineageLung
SubtypeSmall Cell Lung Cancer
OncoTree CodeSCLC

DepMap Information

Source TypeHSRRB
Source IDACH-000670_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg248Leu (c.743G>T)Unspecified-PubMed=18487078
MutationSimpleSMARCA4p.Ala1245Leufs*13 (c.3733_3734del)Homozygous-Unknown
MutationUnexplicitDLG2Ex7-9delHomozygous-PubMed=20215515
MutationSimpleCDKN2Ap.Val82_Glu88del (c.245_265del)Homozygous-Unknown, PubMed=9673367

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
10
D13S317
8,10
D16S539
12
D5S818
10,11
D7S820
8,11
TH01
6
TPOX
9,12
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Molecular and pathologic characterization of YAP1-expressing small cell lung cancer cell lines leads to reclassification as SMARCA4-deficient malignancies.

Burr M.L., Sutherland K.D.

Clin. Cancer Res. 30:1846-1858(2024).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Aberrant methylation and silencing of IRF8 expression in non-small cell lung cancer.

Shibata H., Ito T., Baba Y., Baba H.

Oncol. Lett. 8:1025-1030(2014).

Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer.

Ohba Y., Yamada T., Ito T., Baba Y., Baba H.

Oncol. Rep. 29:1308-1314(2013).

Subpopulation of small-cell lung cancer cells expressing CD133 and CD87 show resistance to chemotherapy.

Ichihara E., Yamane H., Tanimoto M., Kiura K.

Cancer Sci. 104:78-84(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Cytotoxicity of activated natural killer cells and expression of adhesion molecules in small-cell lung cancer.

Takigawa N., Kiura K., Tanimoto M.

Anticancer Res. 32:887-892(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Correlation between interleukin 6 production and tumor proliferation in non-small cell lung cancer.

Fujisawa T.

Cancer Immunol. Immunother. 53:786-792(2004).

Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles.

Nakagawa K., Nomura H., Ishikawa Y.

Lancet 363:775-781(2004).

A novel target gene, SKP2, within the 5p13 amplicon that is frequently detected in small cell lung cancers.

Inazawa J.

Am. J. Pathol. 161:207-216(2002).

Mutation and expression of the DCC gene in human lung cancer.";

Yokota J.

Neoplasia 2:300-305(2000).

Comprehensive analysis of p53 gene mutation characteristics in lung carcinoma with special reference to histological subtypes.

Fujita T., Kiyama M., Tomizawa Y., Kohno T., Yokota J.

Int. J. Oncol. 15:927-934(1999).

Establishment of a drug sensitivity panel using human lung cancer cell lines.

Kohara H., Harada M.

Acta Med. Okayama 53:67-75(1999).

Coincidental alterations of p16INK4A/CDKN2 and other genes in human lung cancer cell lines.

Fujishita T., Mizushima Y., Kashii T., Kobayashi M.

Anticancer Res. 18:1537-1542(1998).

Small cell lung cancer can express CD34 antigen.";

Hiraki A., Ueoka H., Harada M.

Anticancer Res. 17:3627-3632(1997).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Inhibitory effects of cholera toxin on in vitro growth of human lung cancer cell lines.

Kiura K., Watarai S., Shibayama T., Ohnoshi T., Kimura I., Yasuda T.

Anticancer Drug Des. 8:417-428(1993).

Gene analysis of K-, H-ras, p53, and retinoblastoma susceptibility genes in human lung cancer cell lines by the polymerase chain reaction/single-strand conformation polymorphism method.

Kashii T., Mizushima Y., Monno S., Nakagawa K., Kobayashi M.

J. Cancer Res. Clin. Oncol. 120:143-148(1994).

Studies on cell biology and chemotherapy of lung cancer using tissue culture techniques. Part 2. Biological characteristics of five newly established small cell lung cancer cell lines.

Kishimoto N.

Okayama Igakkai Zasshi 104:905-913(1992).