SCC-25Homo sapiens (Human)Cancer cell line

Also known as: SCC 25, SCC25, hSCC-25, SCCS-25

🤖 AI SummaryBased on 17 publications

Quick Overview

Human head and neck squamous cell carcinoma cell line with known radioresistance and genetic alterations.

Detailed Summary

SCC-25 is a human head and neck squamous cell carcinoma cell line derived from a patient with oral cancer. It is characterized by radioresistance and has been studied in the context of radiation therapy failure and tumor cell biology. The cell line exhibits specific genetic alterations, including mutations in the p53 gene and potential disruptions in tumor suppressor genes such as FAT and NOTCH1. SCC-25 has been used in research to investigate mechanisms of radioresistance, DNA repair, and the role of specific genes in tumor progression. Its properties make it a valuable model for studying head and neck cancers and developing targeted therapies.

Research Applications

Radiation resistance and radiotherapy failureGenetic alterations and tumor suppressor gene mutationsDNA repair mechanismsHead and neck cancer biology

Key Characteristics

Radioresistantp53 mutationsFAT gene alterationsNOTCH1 mutations
Generated on 6/17/2025

Basic Information

Database IDCVCL_1682
SpeciesHomo sapiens (Human)
Tissue SourceOral cavity, tongue[UBERON:UBERON_0001723]

Donor Information

Age70
Age CategoryAdult
SexMale

Disease Information

DiseaseTongue squamous cell carcinoma
LineageHead and Neck
SubtypeOral Cavity Squamous Cell Carcinoma
OncoTree CodeOCSC

DepMap Information

Source TypeATCC
Source IDACH-000188_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg209Lysfs*6 (c.626_627delGA)Heterozygous-from parent cell line SCC-25

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D10S1248
13,16
D12S391
17
D13S317
13
D16S539
11,12
D18S51
15,16
D19S433
13,14
D1S1656
17,18.3
D21S11
30
D22S1045
11,15
D2S1338
17,19
D2S441
11.3
D3S1358
17
D5S818
12
D6S1043
13,18
D7S820
12
D8S1179
12.3
FGA
20,24
Penta D
13
Penta E
14,15
TH01
8
TPOX
8,12
vWA
17,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Head and neck tumor cell lines.";

Carey T.E.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.79-120; Academic Press; New York; USA (1994).

Frequent p53 mutations in head and neck cancer.";

Casey G.

Cancer Res. 52:5997-6000(1992).

Expression of the polymorphic human DNA repair gene XRCC1 does not correlate with radiosensitivity in the cells of human head and neck tumor cell lines.

Dunphy E.J., Beckett M.A., Thompson L.H., Weichselbaum R.R.

Radiat. Res. 130:166-170(1992).

The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines.

Hallahan D.E., Beckett M.A., Kufe D.W., Weichselbaum R.R.

Int. J. Radiat. Oncol. Biol. Phys. 19:69-74(1990).

Radiobiological characterization of 53 human tumor cell lines.";

Weichselbaum R.R., Rotmensch J., Ahmed-Swan S., Beckett M.A.

Int. J. Radiat. Biol. 56:553-560(1989).

Faster repair of DNA double-strand breaks in radioresistant human tumor cells.

Weichselbaum R.R.

Int. J. Radiat. Oncol. Biol. Phys. 15:907-912(1988).

Multiparametric flow cytometry of human squamous cell carcinoma lines from the head and neck.

Wustrow T.P.U., Raffael A., Valet G.K.

Otolaryngol. Head Neck Surg. 98:552-557(1988).

Radioresistant tumor cells are present in head and neck carcinomas that recur after radiotherapy.

Weichselbaum R.R., Beckett M.A., Schwartz J.L., Dritschilo A.

Int. J. Radiat. Oncol. Biol. Phys. 15:575-579(1988).

Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head- and neck-cancer patients.

Clark J., Ervin T.J.

Proc. Natl. Acad. Sci. U.S.A. 83:2684-2688(1986).

Characterization of a human squamous carcinoma cell line resistant to cis-diamminedichloroplatinum(II).

Rosowsky A., Henner W.D., Frei E. 3rd

Cancer Res. 47:388-393(1987).

Cellular X-ray repair parameters of early passage squamous cell carcinoma lines derived from patients with known responses to radiotherapy.

Hellman S., Rheinwald J.G.

Br. J. Cancer 49:595-601(1984).

Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas.

Rheinwald J.G., Beckett M.A.

Cancer Res. 41:1657-1663(1981).

p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines.

Weichselbaum R.R.

Cancer Res. 53:3667-3669(1993).

Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines.

Chapman C., Mitchell R., Robertson G., Soutar D., Parkinson E.K.

Br. J. Cancer 67:1274-1284(1993).

Head and neck squamous cell carcinoma cell lines: established models and rationale for selection.

Koch W.M., Ferris R.L., Lai S.Y.

Head Neck 29:163-188(2007).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

Phosphoinositide kinase-3 status associated with presence or absence of human papillomavirus in head and neck squamous cell carcinomas.

Yarbrough W.G., Whigham A., Brown B., Roach M., Slebos R.J.C.

Int. J. Radiat. Oncol. Biol. Phys. 69:S98-S101(2007).

Integrative molecular characterization of head and neck cancer cell model genomes.

Tsui I.F.L., Garnis C.

Head Neck 32:1143-1160(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites.

Grandis J.R., Sidransky D., Heldin N.-E., Myers J.N.

Clin. Cancer Res. 17:7248-7264(2011).

Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma.

Spellman P.T., South A.P., Aster J.C., Blacklow S.C., Cho R.J.

Proc. Natl. Acad. Sci. U.S.A. 108:17761-17766(2011).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

MAPK/ERK-dependent translation factor hyperactivation and dysregulated laminin gamma2 expression in oral dysplasia and squamous cell carcinoma.

Degen M., Natarajan E., Barron P., Widlund H.R., Rheinwald J.G.

Am. J. Pathol. 180:2462-2478(2012).

FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis.

Goldie S.J., Mulder K.W., Tan D.W.-M., Lyons S.K., Sims A.H., Watt F.M.

Cancer Res. 72:3424-3436(2012).

Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability.

Symer D.E., Gillison M.L.

Genome Res. 24:185-199(2014).

Regulation of estrogen receptor alpha function in oral squamous cell carcinoma cells by FAK signaling.

Hsiao Y.-H., Luo F.-J., Yuan T.-C.

Endocr. Relat. Cancer 21:555-565(2014).

The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies.

Zaida M., Delic N.C., Samuels Y., Lyons J.G., Gutkind J.S.

Oncotarget 5:8906-8923(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Upregulated interleukin-6 expression contributes to erlotinib resistance in head and neck squamous cell carcinoma.

Simons A.L.

Mol. Oncol. 9:1371-1383(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Tumor growth and cell proliferation rate in human oral cancer.";

Gavish A., Krayzler E., Nagler R.

Arch. Med. Res. 47:271-274(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines.

Frederick M.J., Myers J.N., Pickering C.R., Johnson F.M.

Oncotarget 8:86369-86383(2017).

Epithelial-mesenchymal crosstalk induces radioresistance in HNSCC cells.

Riechelmann H., Dudas J., Skvortsova I.-I.

Oncotarget 9:3641-3652(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Web Resources