SCC-4Homo sapiens (Human)Cancer cell line

Also known as: SCC4, SCC 4

🤖 AI SummaryBased on 13 publications

Quick Overview

Human squamous cell carcinoma cell line for cancer research.

Detailed Summary

SCC-4 is a human squamous cell carcinoma cell line derived from oral epithelial cells. It is widely used in research to study the molecular mechanisms of cancer progression, particularly in the context of head and neck squamous cell carcinoma (HNSCC). The cell line has been utilized in studies investigating the effects of curcumin on protein translation machinery, as well as in genomic and proteomic analyses to identify potential therapeutic targets. SCC-4 exhibits characteristics such as altered p53 protein levels and specific genetic mutations, making it a valuable model for studying tumor biology and drug response. Its applications span from basic research on cell signaling pathways to preclinical drug development and validation of biomarkers.

Research Applications

Cancer biologyDrug screeningGenomic analysisProteomic studiesMolecular mechanisms of cancer progression

Key Characteristics

Altered p53 protein levelsSpecific genetic mutationsResponse to curcumin treatmentExpression of keratin proteins
Generated on 6/17/2025

Basic Information

Database IDCVCL_1684
SpeciesHomo sapiens (Human)
Tissue SourceOral cavity, tongue[UBERON:UBERON_0001723]

Donor Information

Age55
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the oral tongue
LineageHead and Neck
SubtypeOral Cavity Squamous Cell Carcinoma
OncoTree CodeOCSC

DepMap Information

Source TypeATCC
Source IDACH-000238_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Pro151Ser (c.451C>T)UnspecifiedSomatic mutation acquired during proliferationPubMed=28445466

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11
D13S317
11,13
D16S539
12
D18S51
15
D19S433
12,14
D21S11
32.2
D2S1338
16,24
D3S1358
18
D5S818
13
D7S820
9,11
D8S1179
14
FGA
21,22
Penta D
12
Penta E
14
TH01
9.3
TPOX
8
vWA
15,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Evofosfamide for the treatment of human papillomavirus-negative head and neck squamous cell carcinoma.

Hart C.P., Print C.G., Wilson W.R., Curran M.A., Hunter F.W.

JCI Insight 3:e122204.1-e122204.19(2018).

Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines.

Frederick M.J., Myers J.N., Pickering C.R., Johnson F.M.

Oncotarget 8:86369-86383(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Regulation of estrogen receptor alpha function in oral squamous cell carcinoma cells by FAK signaling.

Hsiao Y.-H., Luo F.-J., Yuan T.-C.

Endocr. Relat. Cancer 21:555-565(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma.

Spellman P.T., South A.P., Aster J.C., Blacklow S.C., Cho R.J.

Proc. Natl. Acad. Sci. U.S.A. 108:17761-17766(2011).

Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites.

Grandis J.R., Sidransky D., Heldin N.-E., Myers J.N.

Clin. Cancer Res. 17:7248-7264(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells.

Sonenberg N., Lotan R.

Cancer Prev. Res. (Philadelphia) 3:331-338(2010).

Integrative molecular characterization of head and neck cancer cell model genomes.

Tsui I.F.L., Garnis C.

Head Neck 32:1143-1160(2010).

Head and neck squamous cell carcinoma cell lines: established models and rationale for selection.

Koch W.M., Ferris R.L., Lai S.Y.

Head Neck 29:163-188(2007).

Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines.

Chapman C., Mitchell R., Robertson G., Soutar D., Parkinson E.K.

Br. J. Cancer 67:1274-1284(1993).

Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas.

Rheinwald J.G., Beckett M.A.

Cancer Res. 41:1657-1663(1981).

Cellular X-ray repair parameters of early passage squamous cell carcinoma lines derived from patients with known responses to radiotherapy.

Hellman S., Rheinwald J.G.

Br. J. Cancer 49:595-601(1984).

The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells and nonkeratinizing epithelia.

Griffiths C.T., Rheinwald J.G.

Cell 31:693-703(1982).

Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head- and neck-cancer patients.

Clark J., Ervin T.J.

Proc. Natl. Acad. Sci. U.S.A. 83:2684-2688(1986).

Radioresistant tumor cells are present in head and neck carcinomas that recur after radiotherapy.

Weichselbaum R.R., Beckett M.A., Schwartz J.L., Dritschilo A.

Int. J. Radiat. Oncol. Biol. Phys. 15:575-579(1988).

Radiobiological characterization of 53 human tumor cell lines.";

Weichselbaum R.R., Rotmensch J., Ahmed-Swan S., Beckett M.A.

Int. J. Radiat. Biol. 56:553-560(1989).

Frequent p53 mutations in head and neck cancer.";

Casey G.

Cancer Res. 52:5997-6000(1992).

Head and neck tumor cell lines.";

Carey T.E.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.79-120; Academic Press; New York; USA (1994).