SCC-9Homo sapiens (Human)Cancer cell line

Also known as: SFCI-SCC-09, SCC9, SCC 9

🤖 AI SummaryBased on 10 publications

Quick Overview

Human squamous cell carcinoma cell line for cancer research.

Detailed Summary

SCC-9 is a human squamous cell carcinoma cell line derived from oral cavity tissues. It is widely used in cancer research to study molecular mechanisms and therapeutic responses. The cell line exhibits specific genetic alterations, including homozygous deletions in the FAT gene, which is associated with tumor suppressor functions. SCC-9 is utilized in studies involving head and neck cancers, particularly in investigating the role of cell polarity and adhesion molecules. Research on SCC-9 contributes to understanding the genetic basis of cancer progression and drug sensitivity.

Research Applications

Cancer biologyDrug sensitivityGenomic profilingTumor suppressor function

Key Characteristics

Homozygous deletion in FAT geneExpresses cell adhesion moleculesUsed in head and neck cancer studies
Generated on 6/17/2025

Basic Information

Database IDCVCL_1685
SpeciesHomo sapiens (Human)
Tissue SourceOral cavity, tongue, anterior part[UBERON:UBERON_0010032]

Donor Information

Age25
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the oral tongue
LineageHead and Neck
SubtypeOral Cavity Squamous Cell Carcinoma
OncoTree CodeOCSC

DepMap Information

Source TypeATCC
Source IDACH-000181_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Val274_Glu285del (c.820_851del32)Unspecified-PubMed=25275298, PubMed=1423286

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11
D13S317
9
D16S539
10,11
D18S51
12,14
D19S433
12,14
D21S11
28
D2S1338
19,21
D3S1358
15
D5S818
12
D7S820
8
D8S1179
13
FGA
20,25
Penta D
9
Penta E
11
TH01
8,9
TPOX
9,11
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Biological and genetic characterization of a newly established human external auditory canal carcinoma cell line, SCEACono2.

Manako T., Kuga R., Hongo T., Kogo R., Onishi H., Nakagawa T.

Sci. Rep. 13:19636-19636(2023).

Fanconi anemia-isogenic head and neck cancer cell line pairs: a basic and translational science resource.

Smogorzewska A., Monnat R.J. Jr.

Int. J. Cancer 153:183-196(2023).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway.

McDermott U., Garnett M.J., Cheong S.-C.

eLife 9:e57761.1-e57761.34(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Evofosfamide for the treatment of human papillomavirus-negative head and neck squamous cell carcinoma.

Hart C.P., Print C.G., Wilson W.R., Curran M.A., Hunter F.W.

JCI Insight 3:e122204.1-e122204.19(2018).

Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines.

Frederick M.J., Myers J.N., Pickering C.R., Johnson F.M.

Oncotarget 8:86369-86383(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies.

Zaida M., Delic N.C., Samuels Y., Lyons J.G., Gutkind J.S.

Oncotarget 5:8906-8923(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites.

Grandis J.R., Sidransky D., Heldin N.-E., Myers J.N.

Clin. Cancer Res. 17:7248-7264(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Integrative molecular characterization of head and neck cancer cell model genomes.

Tsui I.F.L., Garnis C.

Head Neck 32:1143-1160(2010).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

Head and neck squamous cell carcinoma cell lines: established models and rationale for selection.

Koch W.M., Ferris R.L., Lai S.Y.

Head Neck 29:163-188(2007).

Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines.

Chapman C., Mitchell R., Robertson G., Soutar D., Parkinson E.K.

Br. J. Cancer 67:1274-1284(1993).

Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas.

Rheinwald J.G., Beckett M.A.

Cancer Res. 41:1657-1663(1981).

Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head- and neck-cancer patients.

Clark J., Ervin T.J.

Proc. Natl. Acad. Sci. U.S.A. 83:2684-2688(1986).

Radiobiological characterization of 53 human tumor cell lines.";

Weichselbaum R.R., Rotmensch J., Ahmed-Swan S., Beckett M.A.

Int. J. Radiat. Biol. 56:553-560(1989).

Radiobiological characterization of head and neck and sarcoma cells derived from patients prior to radiotherapy.

Moran W.J., Vokes E.E., Ahmed-Swan S., Farhangi E.

Int. J. Radiat. Oncol. Biol. Phys. 19:313-319(1990).

Expression of the polymorphic human DNA repair gene XRCC1 does not correlate with radiosensitivity in the cells of human head and neck tumor cell lines.

Dunphy E.J., Beckett M.A., Thompson L.H., Weichselbaum R.R.

Radiat. Res. 130:166-170(1992).

Mutations in the p53 gene in radiation-sensitive and -resistant human squamous carcinoma cells.

Jung M., Notario V., Dritschilo A.

Cancer Res. 52:6390-6393(1992).

Head and neck tumor cell lines.";

Carey T.E.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.79-120; Academic Press; New York; USA (1994).

Cellular and molecular mechanisms of radioresistance.";

Haraf D., Hallahan D.E., Kufe D.W.

(In book chapter) Head and neck cancer. Cancer treatment and research, Vol. 74; Hong W.K., Weber R.S. (eds.); pp.131-140; Springer; Boston; USA (1995).