SF268Homo sapiens (Human)Cancer cell line

Also known as: SF 268, SF.268, SF-268, SP-268 (Occasionally.)

🤖 AI SummaryBased on 14 publications

Quick Overview

Human glioblastoma cell line for cancer research

Detailed Summary

SF268 is a human glioblastoma cell line derived from a brain tumor. It is widely used in cancer research to study tumor biology, drug resistance mechanisms, and genetic diversity. This cell line has been utilized in multiple studies to investigate the molecular characteristics of glioblastomas and their response to various therapeutic agents. Research on SF268 has contributed to understanding the complexities of cancer cell metabolism, gene expression, and the role of specific genetic mutations in tumor progression. The cell line is part of the NCI-60 panel, which includes a diverse set of cancer cell lines for high-throughput screening and drug development.

Research Applications

Cancer biology researchDrug resistance mechanismsGenetic diversity studiesMolecular profilingHigh-throughput screening

Key Characteristics

Part of the NCI-60 panelUsed in drug developmentStudied for tumor metabolismInvestigated for gene expression patterns
Generated on 6/17/2025

Basic Information

Database IDCVCL_1689
SpeciesHomo sapiens (Human)
Tissue SourceBrain, right parietal lobe[UBERON:UBERON_0002803]

Donor Information

Age24
Age CategoryAdult
SexMale

Disease Information

DiseaseAstrocytoma
LineageCNS/Brain
SubtypeAstrocytoma
OncoTree CodeASTR

DepMap Information

Source TypeAcademic lab
Source IDACH-000655_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg273His (c.818G>A)Homozygous-Unknown, PubMed=16264262

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
12
D13S317
11
D16S539
9,13
D18S51
16
D19S433
13,15.2
D21S11
30,32.2
D2S1338
19,24
D3S1358
14,16
D5S818
11
D7S820
10,11
D8S1179
14
FGA
21
Penta D
9,12
Penta E
12,14
TH01
6,9
TPOX
8,10
vWA
17,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

Mob. DNA 7:20.1-20.11(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Vandesompele J.

Sci. Data 3:160052-160052(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

PLoS ONE 9:E92047-E92047(2014).

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Hirshfield K.M., Oltvai Z.N., Vazquez A.

Cancer Metab. 1:20.1-20.13(2013).

Global proteome analysis of the NCI-60 cell line panel.";

Wilhelm M., Kuster B.

Cell Rep. 4:609-620(2013).

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

Cancer Res. 73:4372-4382(2013).

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Science 336:1040-1044(2012).

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

Yoon C.N., Chang Y.-T.

PLoS ONE 7:E32096-E32096(2012).

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

PLoS ONE 7:E31628-E31628(2012).

JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

Kong D.-X., Yamori T.

Bioorg. Med. Chem. 20:1947-1951(2012).

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Ambudkar S.V., Gottesman M.M.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

DNA fingerprinting of the NCI-60 cell line panel.";

Chanock S.J., Weinstein J.N.

Mol. Cancer Ther. 8:713-724(2009).

Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.

Jones C.

PLoS ONE 4:E5209-E5209(2009).

Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.

Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.

Cancer Biol. Ther. 7:699-708(2008).

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mol. Cancer Ther. 5:2606-2612(2006).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

HLA class I and II genotype of the NCI-60 cell lines.";

Morse H.C. 3rd, Stroncek D., Marincola F.M.

J. Transl. Med. 3:11.1-11.8(2005).

Systematic variation in gene expression patterns in human cancer cell lines.

Botstein D., Brown P.O.

Nat. Genet. 24:227-235(2000).

Establishment and characterization of five cell lines derived from human malignant gliomas.

Bell C.W., Stern R.S., Wilson C.B., Rosenblum M.L.

Acta Neuropathol. 75:92-103(1987).

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

J. Natl. Cancer Inst. 83:757-766(1991).

Human glioma cell lines.";

Nister M., Westermark B.

(In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.17-42; Academic Press; New York; USA (1994).

Brain tumors.";

Ali-Osman F.

(In book chapter) Human cell culture. Vol. 2. Cancer cell lines part 2; Masters J.R.W., Palsson B.O. (eds.); pp.167-184; Kluwer Academic Publishers; New York; USA (1999).