SNU-C1Homo sapiens (Human)Cancer cell line

Also known as: NCI-SNU-C1, SNUC1

🤖 AI SummaryBased on 13 publications

Quick Overview

Human colorectal cancer cell line with known genetic and molecular characteristics.

Detailed Summary

SNU-C1 is a human colorectal cancer cell line derived from a primary tumor. It is widely used in cancer research to study the molecular mechanisms of colorectal cancer, including the role of specific genetic mutations and signaling pathways. The cell line has been characterized for its response to various therapeutic agents and is part of several large-scale genomic and proteomic studies. SNU-C1 is particularly noted for its utility in understanding the impact of mismatch repair deficiency and other genetic alterations on drug sensitivity and tumor biology.

Research Applications

Genomic and proteomic profilingDrug sensitivity testingMolecular mechanism studiesTherapeutic target identification

Key Characteristics

Known for mismatch repair deficiencyUsed in studies of colorectal cancer biologyPart of large-scale cancer cell line panels
Generated on 6/17/2025

Basic Information

Database IDCVCL_1708
SpeciesHomo sapiens (Human)
Tissue SourcePeritoneum[UBERON:UBERON_0002358]

Donor Information

Age71
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000722_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Ser166Ter (c.497C>A)Homozygous-from parent cell line SNU-C1
Gene fusionAPIPAPIP-SLC1A2-In framefrom parent cell line SNU-C1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D13S317
9,11
D16S539
9,11
D18S51
16
D19S433
13,14
D21S11
30
D2S1338
17,25
D3S1358
17
D5S818
10
D7S820
10,11
D8S1179
13,15
FGA
24
Penta D
9,10
Penta E
13,16
TH01
7,9
TPOX
11,12
vWA
16,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types.

West R.B., Pollack J.R.

PLoS Genet. 9:E1003464-E1003464(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Biology of SNU cell lines.";

Ku J.-L., Park J.-G.

Cancer Res. Treat. 37:1-19(2005).

Biology of colorectal and gastric cancer cell lines.";

Park J.-G., Gazdar A.F.

J. Cell. Biochem. Suppl. 24:131-141(1996).

NCI-Navy Medical Oncology Branch cell line data base.";

Carney D.N., Minna J.D., Mulshine J.L.

J. Cell. Biochem. Suppl. 24:32-91(1996).

p53 functional loss in a colon cancer cell line with two missense mutations (218leu and 248trp) on separate alleles.

Karnes W.E. Jr.

Cancer Lett. 98:183-191(1996).

Characteristics of cell lines established from human colorectal carcinoma.

Johnson B.E., Gazdar A.F.

Cancer Res. 47:6710-6718(1987).

Web Resources