ST486Homo sapiens (Human)Cancer cell line

Also known as: ST 486

🤖 AI SummaryBased on 10 publications

Quick Overview

ST486 is a Burkitt lymphoma cell line with c-myc mutations and genomic instability.

Detailed Summary

ST486 is a Burkitt lymphoma cell line derived from a sporadic case. It exhibits mutations in the c-myc gene, which is a key oncogene in Burkitt lymphoma. The cell line shows genomic instability, including chromosomal translocations and copy number variations. ST486 has been used in studies to understand the role of c-myc in tumorigenesis and drug sensitivity. Research on ST486 has contributed to the identification of genetic alterations associated with cancer progression and therapeutic responses.

Research Applications

c-myc mutation analysisgenomic instability studiesdrug sensitivity profilingtumorigenesis research

Key Characteristics

c-myc mutationsgenomic instabilitychromosomal translocationscopy number variations
Generated on 6/17/2025

Basic Information

Database IDCVCL_1712
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age CategoryUnknown
SexFemale

Disease Information

DiseaseBurkitt lymphoma
LineageLymphoid
SubtypeBurkitt Lymphoma
OncoTree CodeBL

DepMap Information

Source TypeATCC
Source IDACH-000567_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg158His (c.473G>A)Homozygous-Unknown, Unknown
Gene fusionIGHMYC-IGH--PubMed=31160637

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D13S317
8,12
D16S539
9,12
D18S51
15,16
D19S433
13
D21S11
31.2,32.2
D2S1338
18,25
D3S1358
14,20
D5S818
11,12
D7S820
7,12
D8S1179
10,11
FGA
19,22
Penta D
10,15
Penta E
10,17
TH01
7,9
TPOX
8,11
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

J. Virol. 89:713-729(2015).

Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.

Vettorazzi E., Bokemeyer C., Dierlamm J.

Genes Chromosomes Cancer 53:497-515(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Novel genomic imbalances and chromosome translocations involving c-myc gene in Burkitt's lymphoma.

Zimonjic D.B., Keck-Waggoner C.L., Popescu N.C.

Leukemia 15:1582-1588(2001).

Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.

Magrath I.T., Bhatia K.G.

Cancer Res. 59:696-703(1999).

Amplification of the translocated c-myc genes in three Burkitt lymphoma cell lines.

Khaira P., James C.D., Leffak M.

Gene 211:101-108(1998).

p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.

Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.

Blood 91:1680-1687(1998).

Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.

Pike S.E., Gupta G., Magrath I.T., Tosato G.

Cancer Res. 57:2508-2515(1997).

IL-12 expression in AIDS-related lymphoma B cell lines.";

Trinchieri G.

J. Immunol. 156:1626-1637(1996).

Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.

Jain V.K., Judde J.-G., Max E.E., Magrath I.T.

J. Immunol. 150:5418-5428(1993).

Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.

Kohn K.W.

Cancer Res. 53:4776-4780(1993).

Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.

Magrath I.T.

FASEB J. 7:951-956(1993).

Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas.

Bhatia K.G., Huppi K., Spangler G., Siwarski D., Iyer R., Magrath I.T.

Nat. Genet. 5:56-61(1993).

B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.

Goodwin R.G.

J. Immunol. 152:4749-4757(1994).

Relationships between G1 arrest and stability of the p53 and p21Cip1/Waf1 proteins following gamma-irradiation of human lymphoma cells.

O'Connor P.M.

Cancer Res. 55:2387-2393(1995).

Translocated c-myc oncogene of Burkitt lymphoma is transcribed in plasma cells and repressed in lymphoblastoid cells.

Croce C.M., Erikson J., ar-Rushdi A., Aden D.P., Nishikura K.

Proc. Natl. Acad. Sci. U.S.A. 81:3170-3174(1984).

Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.

Parsons R.G.

J. Immunol. 129:1336-1342(1982).

Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.

Sherrick D., Gray T.E.

Cancer Res. 41:3165-3171(1981).

Characterization of lymphoma-derived cell lines: comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers.

Santaella M., Hammer C., Frank M.M., Reaman G., Novikovs L.

J. Natl. Cancer Inst. 64:477-483(1980).

Characterization of lymphoma-derived cell lines: comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. I. Physical, cytogenetic, and growth characteristics.

Gerber P., Freeman C.B., Novikovs L.

J. Natl. Cancer Inst. 64:465-476(1980).

Cloning and sequencing of a c-myc oncogene in a Burkitt's lymphoma cell line that is translocated to a germ line alpha switch region.

Croce C.M.

Mol. Cell. Biol. 5:501-509(1985).

Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.

Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.

Cell. Immunol. 103:394-408(1986).

Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.

Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.

Cancer Res. 46:1182-1188(1986).

Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.

Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.

Int. J. Cancer 39:211-218(1987).

p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.

Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.

Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991).

Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.

Benjamin D., Knobloch T.J., Dayton M.A.

Blood 80:1289-1298(1992).