SW1573Homo sapiens (Human)Cancer cell line

Also known as: SW 1573, SW-1573, SW1753 (Occasionally.), SW-1753 (Occasionally.)

🤖 AI SummaryBased on 13 publications

Quick Overview

Human cancer cell line for research on cancer biology and drug development.

Detailed Summary

SW1573 is a human cancer cell line derived from a tumor, widely used in cancer research. It is utilized in studies related to cancer biology, drug sensitivity, and molecular mechanisms. The cell line is part of various research initiatives, including genomic and proteomic analyses, and is employed in investigations of cancer cell line diversity and therapeutic responses. Its applications span across multiple cancer types, contributing to the understanding of tumor genetics and treatment strategies.
Generated on 6/17/2025

Basic Information

Database IDCVCL_1720
SpeciesHomo sapiens (Human)
Tissue SourceLung[UBERON:UBERON_0002048]

Donor Information

Age44
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseMinimally invasive lung adenocarcinoma
LineageLung
SubtypeLung Adenocarcinoma
OncoTree CodeLUAD

DepMap Information

Source TypeATCC
Source IDACH-000677_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleSMARCB1c.362+1G>CHeterozygousSplice donor mutationfrom parent cell line SW1573/S1
MutationSimplePIK3CAp.Lys111Glu (c.331A>G)Heterozygous-from parent cell line SW1573/S1
MutationSimpleKRASp.Gly12Cys (c.34G>T)Unspecified-PubMed=21173094
MutationSimpleCTNNB1p.Ser33Phe (c.98C>T)Heterozygous-PubMed=31953491
Gene deletionSMAD4-Homozygous-from parent cell line BxPC-3
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D13S317
11
D16S539
12,14
D18S51
16
D19S433
13
D21S11
29
D2S1338
19,20
D3S1358
14,18
D5S818
12,13
D7S820
9,11
D8S1179
11
FGA
21
Penta D
9
Penta E
5,13
TH01
6,9.3
TPOX
8,11
vWA
20
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Proteome analysis of non-small cell lung cancer cell line secretomes and patient sputum reveals biofluid biomarker candidates for cisplatin response prediction.

Jimenez C.R.

J. Proteomics 196:106-119(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Gene-expression data integration to squamous cell lung cancer subtypes reveals drug sensitivity.

Wu D., Pang Y., Wilkerson M.D., Wang D., Hammerman P.S., Liu J.S.

Br. J. Cancer 109:1599-1608(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Cross-resistance to antifolates in multidrug resistant cell lines with P-glycoprotein or multidrug resistance protein expression.

Peters G.J.

Biochem. Pharmacol. 53:1855-1866(1997).

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

Wright W.C., Daniels W.P., Fogh J.

J. Natl. Cancer Inst. 66:239-247(1981).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Correlation of multidrug resistance with decreased drug accumulation, altered subcellular drug distribution, and increased P-glycoprotein expression in cultured SW-1573 human lung tumor cells.

Schoonen W.G.E.J., van Rijn J., Pinedo H.M., Joenje H.

Cancer Res. 49:2988-2993(1989).

Non-P-glycoprotein mediated mechanism for multidrug resistance precedes P-glycoprotein expression during in vitro selection for doxorubicin resistance in a human lung cancer cell line.

Joenje H.

Cancer Res. 50:5392-5398(1990).

Cytogenetic alterations associated with P-glycoprotein- and non-P-glycoprotein-mediated multidrug resistance in SW-1573 human lung tumor cell lines.

Nieuwint A.W.M., Baas F., Wiegant J., Joenje H.

Cancer Res. 52:4361-4371(1992).

Web Resources