SW48Homo sapiens (Human)Cancer cell line
Also known as: SW-48, SW 48
Quick Overview
SW48 is a human colorectal cancer cell line used in cancer research.
Detailed Summary
Key Characteristics
Basic Information
Database ID | CVCL_1724 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Colon[UBERON:UBERON_0001155] |
Donor Information
Age | 83 |
---|---|
Age Category | Adult |
Sex | Female |
Race | caucasian |
Subtype Features | MSI |
Disease Information
Disease | Colon adenocarcinoma |
---|---|
Lineage | Bowel |
Subtype | Colon Adenocarcinoma |
OncoTree Code | COAD |
DepMap Information
Source Type | ATCC |
---|---|
Source ID | ACH-000958_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | ACVR2A | p.Lys437Argfs*5 (c.1310delA) | Homozygous | - | PubMed=12615714 |
MutationSimple | APC | p.Arg2714Cys (c.8140C>T) | Unspecified | - | from parent cell line SW48 |
MutationSimple | B2M | p.Ser14fs*29 (c.41_44delCTCT) | Heterozygous | - | from parent cell line SW48 |
MutationSimple | B2M | p.Glu67fs (c.200delA) | Heterozygous | - | from parent cell line SW48 |
MutationSimple | CTNNB1 | p.Ser33Tyr (c.98C>A) | Heterozygous | - | from parent cell line SW48 |
MutationSimple | TGFBR2 | p.Lys128Serfs*35 (c.383delA) | Homozygous | - | PubMed=12615714 |
MutationNone reported | TP53 | - | - | - | PubMed=19787792 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
Mol. Cell. Proteomics 15:124-140(2016).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Pharmacoproteomic characterisation of human colon and rectal cancer.
Weichert W., Knapp S., Feller S.M., Kuster B.
Mol. Syst. Biol. 13:951-951(2017).
Genomic determinants of protein abundance variation in colorectal cancer cells.
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.
Cell Rep. 20:2201-2214(2017).
Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
Mol. Cancer 16:116.1-116.16(2017).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Development of media for isolation and cultivation of human cancer cells.
Leibovitz A.
(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.23-50; Springer; New York; USA (1975).
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
Fogh J., Fogh J.M., Orfeo T.
J. Natl. Cancer Inst. 59:221-226(1977).
Morphologic and immunologic studies of a human colon tumor cell line (SW-48).
Berlin J.D.
Cancer 38:2316-2327(1976).
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
Fogh J., Wright W.C., Loveless J.D.
J. Natl. Cancer Inst. 58:209-214(1977).
Analysis of established human carcinoma cell lines for lymphoreticular-associated membrane receptors.
Kerbel R.S., Pross H.F., Leibovitz A.
Int. J. Cancer 20:673-679(1977).
Classification of human colorectal adenocarcinoma cell lines.";
Mabry N.D.
Cancer Res. 36:4562-4569(1976).
Polymorphic enzyme analysis of cultured human tumor cell lines.";
Dracopoli N.C., Fogh J.
J. Natl. Cancer Inst. 70:469-476(1983).
Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins.
Chen T.-R., Hay R.J., Macy M.L.
Cancer Genet. Cytogenet. 10:351-362(1983).
Karyotype consistency in human colorectal carcinoma cell lines established in vitro.
Chen T.-R., Hay R.J., Macy M.L.
Cancer Genet. Cytogenet. 6:93-117(1982).
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Rousset M., Zweibaum A., Fogh J.
Cancer Res. 41:1165-1170(1981).
Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.
Steele G., Summerhayes I.C.
Oncogene 11:647-652(1995).
Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.
Bicknell D.C., Rowan A.J., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).
Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production.
Tibbetts L.M., Doremus C.M., Tzanakakis G.N., Vezeridis M.P.
Cancer 71:315-321(1993).
Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.
Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).
BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.
Hamelin R.
Cancer Res. 57:300-303(1997).
Beta-catenin mutations in cell lines established from human colorectal cancers.
Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).
Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.
Cancer Res. 58:1130-1134(1998).
Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
Neumann T., Jauho A., Auer G., Ried T.
Genes Chromosomes Cancer 27:183-190(2000).
APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.
Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.
Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).
Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.
Minna J.D.
Oncogene 20:1005-1009(2001).
Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.
Hamelin R.
Oncogene 20:5025-5032(2001).
Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.
Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.
Cancer Res. 63:994-999(2003).
Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
Liu Y., Bodmer W.F.
Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).
Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).
Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.
Camps J., McNeil N.E., Difilippantonio M.J., Ried T.
Genes Chromosomes Cancer 49:204-223(2010).
Signatures of mutation and selection in the cancer genome.";
Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Nature 463:893-898(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
Cancer Res. 70:5901-5911(2010).
5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
Br. J. Cancer 103:340-346(2010).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Epigenetic and genetic features of 24 colon cancer cell lines.";
Hektoen M., Lind G.E., Lothe R.A.
Oncogenesis 2:e71.1-e71.8(2013).
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
Mariadason J.M., Sieber O.M.
Cancer Res. 74:3238-3247(2014).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
Nat. Commun. 6:7002.1-7002.10(2015).
Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
Clin. Cancer Res. 21:3695-3704(2015).