SW48Homo sapiens (Human)Cancer cell line

Also known as: SW-48, SW 48

🤖 AI SummaryBased on 14 publications

Quick Overview

SW48 is a human colorectal cancer cell line used in cancer research.

Detailed Summary

SW48 is a human colorectal cancer cell line established from a colon tumor. It is widely used in cancer research for studying tumor biology, drug development, and genetic alterations. The cell line has been characterized for its karyotype, which includes a near-diploid chromosome number with some structural variations. SW48 is also utilized in studies involving tumor progression, metastasis, and response to therapeutic agents. Its use in research has contributed to understanding the molecular mechanisms underlying colorectal cancer.

Key Characteristics

Near-diploid karyotypeUsed in cancer researchCharacterized for genetic alterations
Generated on 6/17/2025

Basic Information

Database IDCVCL_1724
SpeciesHomo sapiens (Human)
Tissue SourceColon[UBERON:UBERON_0001155]

Donor Information

Age83
Age CategoryAdult
SexFemale
Racecaucasian
Subtype FeaturesMSI

Disease Information

DiseaseColon adenocarcinoma
LineageBowel
SubtypeColon Adenocarcinoma
OncoTree CodeCOAD

DepMap Information

Source TypeATCC
Source IDACH-000958_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleACVR2Ap.Lys437Argfs*5 (c.1310delA)Homozygous-PubMed=12615714
MutationSimpleAPCp.Arg2714Cys (c.8140C>T)Unspecified-from parent cell line SW48
MutationSimpleB2Mp.Ser14fs*29 (c.41_44delCTCT)Heterozygous-from parent cell line SW48
MutationSimpleB2Mp.Glu67fs (c.200delA)Heterozygous-from parent cell line SW48
MutationSimpleCTNNB1p.Ser33Tyr (c.98C>A)Heterozygous-from parent cell line SW48
MutationSimpleTGFBR2p.Lys128Serfs*35 (c.383delA)Homozygous-PubMed=12615714
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
9,10
D13S317
11,12
D16S539
11,13
D18S51
13
D19S433
14
D21S11
28,31
D2S1338
19,26,27
D3S1358
13,14,15
D5S818
10,14
D7S820
9,10
D8S1179
13,14
FGA
20
Penta D
10
Penta E
12,13
TH01
6,9.3
TPOX
8
vWA
18,19,20,21
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

Mol. Cell. Proteomics 15:124-140(2016).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Development of media for isolation and cultivation of human cancer cells.

Leibovitz A.

(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.23-50; Springer; New York; USA (1975).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Morphologic and immunologic studies of a human colon tumor cell line (SW-48).

Berlin J.D.

Cancer 38:2316-2327(1976).

Absence of HeLa cell contamination in 169 cell lines derived from human tumors.

Fogh J., Wright W.C., Loveless J.D.

J. Natl. Cancer Inst. 58:209-214(1977).

Analysis of established human carcinoma cell lines for lymphoreticular-associated membrane receptors.

Kerbel R.S., Pross H.F., Leibovitz A.

Int. J. Cancer 20:673-679(1977).

Classification of human colorectal adenocarcinoma cell lines.";

Mabry N.D.

Cancer Res. 36:4562-4569(1976).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins.

Chen T.-R., Hay R.J., Macy M.L.

Cancer Genet. Cytogenet. 10:351-362(1983).

Karyotype consistency in human colorectal carcinoma cell lines established in vitro.

Chen T.-R., Hay R.J., Macy M.L.

Cancer Genet. Cytogenet. 6:93-117(1982).

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Rousset M., Zweibaum A., Fogh J.

Cancer Res. 41:1165-1170(1981).

Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.

Steele G., Summerhayes I.C.

Oncogene 11:647-652(1995).

Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.

Bicknell D.C., Rowan A.J., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994).

Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production.

Tibbetts L.M., Doremus C.M., Tzanakakis G.N., Vezeridis M.P.

Cancer 71:315-321(1993).

Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).

BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines.

Hamelin R.

Cancer Res. 57:300-303(1997).

Beta-catenin mutations in cell lines established from human colorectal cancers.

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997).

Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.

Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.

Cancer Res. 58:1130-1134(1998).

Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.

Neumann T., Jauho A., Auer G., Ried T.

Genes Chromosomes Cancer 27:183-190(2000).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.

Minna J.D.

Oncogene 20:1005-1009(2001).

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Hamelin R.

Oncogene 20:5025-5032(2001).

Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.

Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.

Cancer Res. 63:994-999(2003).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

Camps J., McNeil N.E., Difilippantonio M.J., Ried T.

Genes Chromosomes Cancer 49:204-223(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Epigenetic and genetic features of 24 colon cancer cell lines.";

Hektoen M., Lind G.E., Lothe R.A.

Oncogenesis 2:e71.1-e71.8(2013).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Web Resources