SW837Homo sapiens (Human)Cancer cell line

Also known as: SW-837, SW 837

🤖 AI SummaryBased on 16 publications

Quick Overview

SW837 is a human colorectal cancer cell line derived from a rectal adenocarcinoma, widely used in cancer research for studying ...

Detailed Summary

SW837 is a human colorectal cancer cell line established from a rectal adenocarcinoma, commonly utilized in cancer research to investigate genetic and molecular mechanisms underlying tumorigenesis. This cell line has been extensively characterized in multiple studies, revealing key genetic alterations such as mutations in the APC, KRAS, and TP53 genes, which are critical in colorectal cancer development. Research on SW837 has contributed to understanding the role of genomic instability, chromosomal abnormalities, and the impact of specific mutations on cell behavior and therapeutic responses. The cell line is also used to study the effects of various treatments, including chemotherapy and targeted therapies, providing insights into potential therapeutic strategies for colorectal cancer.

Research Applications

Genomic instability and chromosomal abnormalitiesMutational analysis of cancer-related genes (APC, KRAS, TP53)Therapeutic response studies (chemotherapy, targeted therapies)Molecular mechanisms of tumorigenesis

Key Characteristics

Mutations in APC, KRAS, and TP53 genesGenomic instability and chromosomal abnormalitiesUsed in studies of cancer progression and treatment responses
Generated on 6/17/2025

Basic Information

Database IDCVCL_1729
SpeciesHomo sapiens (Human)
Tissue SourceRectum[UBERON:UBERON_0001052]

Donor Information

Age53
Age CategoryAdult
SexMale
Racecaucasian

Disease Information

DiseaseRectal adenocarcinoma
LineageBowel
SubtypeRectal Adenocarcinoma
OncoTree CodeREAD

DepMap Information

Source TypeATCC
Source IDACH-000421_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleAPCp.Arg1450Ter (c.4348C>T)Unspecified-PubMed=24755471
MutationSimpleFBXW7p.Leu403fs*34 (c.1208_1209insT)Unspecified-PubMed=24755471
MutationSimpleKRASp.Gly12Cys (c.34G>T)Unspecified-PubMed=21173094
MutationSimpleTP53p.Arg248Trp (c.742C>T)HomozygousSomatic mutation acquired during proliferationfrom parent cell line VCaP

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
13
D16S539
12
D18S51
17
D19S433
13
D21S11
28,31.2
D2S1338
24
D3S1358
18
D5S818
12
D7S820
9,12
D8S1179
8,14
FGA
25
Penta D
9,11
Penta E
11,12
TH01
9.3
TPOX
8,9
vWA
15,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies.

Herlyn M., Steplewski Z., Herlyn D., Koprowski H.

Proc. Natl. Acad. Sci. U.S.A. 76:1438-1442(1979).

Analysis of established human carcinoma cell lines for lymphoreticular-associated membrane receptors.

Kerbel R.S., Pross H.F., Leibovitz A.

Int. J. Cancer 20:673-679(1977).

Classification of human colorectal adenocarcinoma cell lines.";

Mabry N.D.

Cancer Res. 36:4562-4569(1976).

Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins.

Chen T.-R., Hay R.J., Macy M.L.

Cancer Genet. Cytogenet. 10:351-362(1983).

Karyotype consistency in human colorectal carcinoma cell lines established in vitro.

Chen T.-R., Hay R.J., Macy M.L.

Cancer Genet. Cytogenet. 6:93-117(1982).

Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.

Steele G., Summerhayes I.C.

Oncogene 11:647-652(1995).

Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer.

Willson J.K.V., Veigl M.L., Sedwick W.D., Markowitz S.D.

Oncogene 10:33-37(1995).

Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993).

Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.

Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.

Oncogene 17:719-725(1998).

Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.

Neumann T., Jauho A., Auer G., Ried T.

Genes Chromosomes Cancer 27:183-190(2000).

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000).

Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.

Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.

Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001).

Assembly of microarrays for genome-wide measurement of DNA copy number.

Pinkel D., Albertson D.G.

Nat. Genet. 29:263-264(2001).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Liu Y., Bodmer W.F.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006).

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008).

Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.

Camps J., McNeil N.E., Difilippantonio M.J., Ried T.

Genes Chromosomes Cancer 49:204-223(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Cancer Res. 70:5901-5911(2010).

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

Br. J. Cancer 103:340-346(2010).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Orphanides G., French T., Wessels L.F.A.

BMC Med. Genomics 5:66.1-66.15(2012).

Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.

Grade M., Gaedcke J.

Radiother. Oncol. 108:451-457(2013).

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Mariadason J.M., Sieber O.M.

Cancer Res. 74:3238-3247(2014).

Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies.

Molloy M.P., Packer N.H.

J. Proteomics 108:146-162(2014).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

Nat. Commun. 6:7002.1-7002.10(2015).

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Clin. Cancer Res. 21:3695-3704(2015).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Mol. Cancer 16:116.1-116.16(2017).

Genomic determinants of protein abundance variation in colorectal cancer cells.

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Cell Rep. 20:2201-2214(2017).

Pharmacoproteomic characterisation of human colon and rectal cancer.

Weichert W., Knapp S., Feller S.M., Kuster B.

Mol. Syst. Biol. 13:951-951(2017).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).