SU-DHL-5Homo sapiens (Human)Cancer cell line
Also known as: DHL5, DHL-5, Stanford University-Diffuse Histiocytic Lymphoma-5, SuDHL 5, SU-DH-L5, SUDHL-5, SUDHL5, Su-DHL-5
Quick Overview
SU-DHL-5 is a human cell line derived from diffuse large B-cell lymphoma, used in cancer research for studying genetic and mole...
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_1735 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Lymph node[UBERON:UBERON_0000029] |
Donor Information
Age | 17 |
---|---|
Age Category | Pediatric |
Sex | Female |
Disease Information
Disease | Diffuse large B-cell lymphoma |
---|---|
Lineage | Lymphoid |
Subtype | Diffuse Large B-Cell Lymphoma, NOS |
OncoTree Code | DLBCLNOS |
DepMap Information
Source Type | DSMZ |
---|---|
Source ID | ACH-000660_source |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
Nature 568:511-516(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
Screening human cell lines for viral infections applying RNA-Seq data analysis.
Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
PLoS ONE 14:E0210404-E0210404(2019).
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
Yang H.H., Koeffler H.P.
BMC Cancer 18:940.1-940.13(2018).
Characterization of human cancer cell lines by reverse-phase protein arrays.
Liang H.
Cancer Cell 31:225-239(2017).
Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation.
Zaborski M., Drexler H.G.
Oncotarget 7:63456-63465(2016).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
Malignant hematopoietic cell lines: in vitro models for double-hit B-cell lymphomas.
Drexler H.G., Eberth S., Nagel S., MacLeod R.A.F.
Leuk. Lymphoma 57:1015-1020(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
J. Virol. 89:713-729(2015).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.
Kutok J.L., Shipp M.A.
Blood 116:3268-3277(2010).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma.
Robetorye R.S., Aguiar R.C.T.
Blood 113:6681-6690(2009).
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Grever M.R., Byrd J.C., Botstein D., Brown P.O., Staudt L.M.
Nature 403:503-511(2000).
PTEN gene alterations in lymphoid neoplasms.";
Sakai A., Thieblemont C., Wellmann A., Jaffe E.S., Raffeld M.
Blood 92:3410-3415(1998).
Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.
Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.
Br. J. Haematol. 91:350-354(1995).
Histiocytic lymphoma cell lines: immunologic and cytogenetic studies.
Hecht F.
Cancer Genet. Cytogenet. 14:205-218(1985).
Feeder layer and nutritional requirements for the establishment and cloning of human malignant lymphoma cell lines.
Epstein A.L., Kaplan H.S.
Cancer Res. 39:1748-1759(1979).
Biology of the human malignant lymphomas. IV. Functional characterization of ten diffuse histiocytic lymphoma cell lines.
Epstein A.L., Levy R., Kim H., Henle W., Henle G.S., Kaplan H.S.
Cancer 42:2379-2391(1978).
Biology of the human malignant lymphomas. III. Intracranial heterotransplantation in the nude, athymic mouse.
Epstein A.L., Herman M.M., Kim H., Dorfman R.F., Kaplan H.S.
Cancer 37:2158-2176(1976).
Biology and virology of the human malignant lymphomas: 1st Milford D. Schulz Lecture.
Kaplan H.S., Goodenow R.S., Gartner S., Bieber M.M.
Cancer 43:1-24(1979).
The leukemia-lymphoma cell line factsbook.";
Drexler H.G.
(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).