TCCSUPHomo sapiens (Human)Cancer cell line

Also known as: TCC Sup, TCC-SUP, TCCSuP, JCCSUP

🤖 AI SummaryBased on 15 publications

Quick Overview

Human bladder cancer cell line with known mutations and drug resistance profiles.

Detailed Summary

TCCSUP is a human bladder cancer cell line derived from transitional cell carcinoma. It is widely used in cancer research due to its well-characterized genetic profile and drug resistance properties. This cell line has been extensively studied for its mutations in the TERT promoter and other key cancer-related genes, making it a valuable model for understanding bladder cancer biology and therapeutic responses. TCCSUP is also notable for its resistance to certain chemotherapeutic agents, which makes it useful for studying drug resistance mechanisms. The cell line has been utilized in multiple studies to investigate the molecular pathways involved in bladder cancer progression and treatment outcomes.

Research Applications

Genetic and molecular profilingDrug resistance studiesTERT promoter mutation analysisCancer cell line authenticationTherapeutic response modeling

Key Characteristics

Mutations in TERT promoterResistance to cisplatin and gemcitabineHigh genomic instabilityExpresses markers associated with urothelial carcinoma
Generated on 6/17/2025

Basic Information

Database IDCVCL_1738
SpeciesHomo sapiens (Human)
Tissue SourceUrinary bladder[UBERON:UBERON_0001255]

Donor Information

Age67
Age CategoryAdult
SexFemale

Disease Information

DiseaseBladder carcinoma
LineageBladder/Urinary Tract
SubtypeBladder Urothelial Carcinoma
OncoTree CodeBLCA

DepMap Information

Source TypeATCC
Source IDACH-000720_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Glu349Ter (c.1045G>T)Unspecified-PubMed=16203773
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
11
D16S539
9,11
D18S51
15
D19S433
14
D21S11
27,31.2
D2S1338
17
D3S1358
15,16
D5S818
12
D7S820
8,9
D8S1179
13
FGA
21
Penta D
11
Penta E
12,14
TH01
6,9.3
TPOX
8
vWA
14,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Systematic review: characteristics and preclinical uses of bladder cancer cell lines.

Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.

Bladder Cancer 4:169-183(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.

Oncogene 36:35-46(2017).

Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics.

Limbart D.M., Rodel F., Wezel F., Haferkamp A., Cinatl J. Jr.

Transl. Oncol. 8:210-216(2015).

The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.

Chanock S.J., Valencia A., Real F.X.

BMC Genomics 16:403.1-403.16(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Identification of mutations in distinct regions of p85 alpha in urothelial cancer.

Knowles M.A.

PLoS ONE 8:E84411-E84411(2013).

Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.

Hurst C.D., Platt F.M., Knowles M.A.

Eur. Urol. 65:367-369(2014).

Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.

Orntoft T.F., Zuiverloon T.C.M., Malats N., Zwarthoff E.C., Real F.X.

Eur. Urol. 65:360-366(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer.

Markl I.D.C., Jones P.A.

Cancer Res. 58:5348-5353(1998).

p53 mutations in bladder carcinoma cell lines.";

Lippa M., Hatzivassiliou G., Tan J.

Oncol. Res. 6:569-579(1994).

Lectins as probes for identification of tumor-associated antigens on urothelial and colonic carcinoma cell lines.

Paulie S., Hansson Y., Lundblad M.-L., Perlmann P.

Int. J. Cancer 31:297-303(1983).

Identity of some human bladder cancer cell lines.";

O'Toole C.M., Povey S., Hepburn P.J., Franks L.M.

Nature 301:429-430(1983).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Polymorphic enzyme analysis of cultured human tumor cell lines.";

Dracopoli N.C., Fogh J.

J. Natl. Cancer Inst. 70:469-476(1983).

Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines.

Franks L.M.

Cancer Res. 46:3630-3636(1986).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

A cell line from an anaplastic transitional cell carcinoma of human urinary bladder.

Nayak S.K., O'Toole C.M., Price Z.H.

Br. J. Cancer 35:142-151(1977).

Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.

Fogh J.

Natl. Cancer Inst. Monogr. 49:5-9(1978).