TE-1Homo sapiens (Human)Cancer cell line

Also known as: TE1

🤖 AI SummaryBased on 13 publications

Quick Overview

Human esophageal squamous cell carcinoma cell line for cancer research.

Detailed Summary

TE-1 is a human esophageal squamous cell carcinoma cell line established from a primary tumor. It is widely used in research for studying the molecular mechanisms of esophageal cancer. The cell line exhibits characteristics of squamous cell carcinoma, including specific chromosomal abnormalities and genetic mutations. TE-1 has been utilized in studies related to tumor suppressor genes, oncogenes, and drug sensitivity. Research on TE-1 has contributed to understanding the genetic and epigenetic changes associated with esophageal carcinogenesis.

Research Applications

cancer researchmolecular mechanisms of esophageal cancertumor suppressor genesoncogenesdrug sensitivity

Key Characteristics

chromosomal abnormalitiesgenetic mutationsepigenetic changes
Generated on 6/17/2025

Basic Information

Database IDCVCL_1759
SpeciesHomo sapiens (Human)
Tissue SourceEsophagus[UBERON:UBERON_0001043]

Donor Information

Age58
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the esophagus
LineageEsophagus/Stomach
SubtypeEsophageal Squamous Cell Carcinoma
OncoTree CodeESCC

DepMap Information

Source TypeJCRB
Source IDACH-000647_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Val272Met (c.814G>A)Unspecified-from parent cell line TE-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,12
D13S317
10
D16S539
12
D18S51
17
D19S433
14,15.2
D21S11
28
D2S1338
19,20
D3S1358
16
D5S818
11
D7S820
11
D8S1179
11,13
FGA
24
TH01
7
TPOX
8,11
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Anlotinib inhibits tumor angiogenesis and promotes the anticancer effect of radiotherapy on esophageal cancer through inhibiting EphA2.

Huang J.

J. Oncol. 2022:5632744.1-5632744.11(2022).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

RNA-Seq analysis of human cell lines established from normal and neoplastic esophageal squamous epithelium.

Akagi I., Ishibashi O.

Genom. Data 12:4-6(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma.

Sasaki K., Hanazawa T., Okamoto Y., Hata A.

Genes Chromosomes Cancer 48:132-142(2009).

Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7.

Lowe A.W., Beverloo H.B., van Dekken H., Tilanus H.W., Dinjens W.N.M.

Cancer Res. 67:7996-8001(2007).

Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma.

Imamura M., Amagasa T., Gray J.W., Hirohashi S., Inazawa J.

Cancer Res. 64:3741-3747(2004).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Inactivation of the p53 protein in cell lines derived from human esophageal cancers.

Hainaut P.

Int. J. Cancer 71:79-87(1997).

Molecular and cellular features of esophageal cancer cells.";

Nishihira T., Hashimoto Y., Katayama M., Mori S., Kuroki T.

J. Cancer Res. Clin. Oncol. 119:441-449(1993).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines.

Yee C., Krishnan-Hewlett I., Baker C.C., Schlegel R., Howley P.M.

Am. J. Pathol. 119:361-366(1985).

Human esophageal carcinoma cells have fewer, but higher affinity epidermal growth factor receptors.

Banks-Schlegel S.P., Quintero J.

J. Biol. Chem. 261:4359-4362(1986).

Cytogenetic studies of esophageal carcinoma cell lines.";

Whang-Peng J., Banks-Schlegel S.P., Lee E.C.

Cancer Genet. Cytogenet. 45:101-120(1990).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Characteristics of two cell lines (TE-1 and TE-2) derived from human squamous cell carcinoma of the esophagus.

Kitamura M., Hirayama K., Akaishi T., Sasaki T.

Gann 70:575-584(1979).

Comprehensive analysis of microRNA and mRNA expression in normal and tumorous human esophageal squamous cell lines using microarray datasets.

Makino H., Yoshida H., Miyashita M., Uchida E.

Dataset Papers Sci. 2013:376541.1-376541.3(2013).