TE-10Homo sapiens (Human)Cancer cell line

Also known as: TE10

🤖 AI SummaryBased on 12 publications

Quick Overview

Human esophageal squamous cell carcinoma cell line for cancer research

Detailed Summary

TE-10 is a human esophageal squamous cell carcinoma cell line derived from the TE series, established in the late 1970s and early 1980s. It is widely used in cancer research for studying molecular mechanisms and therapeutic strategies. The cell line exhibits characteristics of squamous cell carcinoma, including specific genetic alterations and protein expression profiles. Research on TE-10 has contributed to understanding the role of tumor suppressor genes and oncogenes in esophageal cancer progression. It is utilized in studies involving drug sensitivity, apoptosis pathways, and genetic diversity in cancer models.

Research Applications

cancer researchmolecular mechanisms of carcinogenesisdrug sensitivity testingapoptosis pathway studiesgenetic diversity in cancer models

Key Characteristics

derived from esophageal squamous cell carcinomaused in studies of tumor suppressor genespart of the TE series cell linesexpresses specific genetic markers associated with squamous cell carcinoma
Generated on 6/17/2025

Basic Information

Database IDCVCL_1760
SpeciesHomo sapiens (Human)
Tissue SourceEsophagus[UBERON:UBERON_0001043]

Donor Information

Age58
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the esophagus
LineageEsophagus/Stomach
SubtypeEsophageal Squamous Cell Carcinoma
OncoTree CodeESCC

DepMap Information

Source TypeRIKEN
Source IDACH-000318_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Cys242Tyr (c.725G>A)Unspecified-PubMed=32784519

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D13S317
11
D16S539
9,11
D5S818
13
D7S820
8,10
TH01
6
TPOX
8,11
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Bortezomib sensitizes human esophageal squamous cell carcinoma cells to TRAIL-mediated apoptosis via activation of both extrinsic and intrinsic apoptosis pathways.

Kusukawa J., Kage M., Shirouzu K., Yamana H.

Mol. Cancer Ther. 9:1842-1851(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7.

Lowe A.W., Beverloo H.B., van Dekken H., Tilanus H.W., Dinjens W.N.M.

Cancer Res. 67:7996-8001(2007).

Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma.

Imamura M., Amagasa T., Gray J.W., Hirohashi S., Inazawa J.

Cancer Res. 64:3741-3747(2004).

Expression of G1 cell cycle markers and the effect of adenovirus-mediated overexpression of p21Waf-1 in squamous cell carcinoma of the esophagus.

Morimatsu M.

Int. J. Oncol. 18:157-163(2001).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Itoh K.

Cell. Immunol. 177:176-181(1997).

Inactivation of the p53 protein in cell lines derived from human esophageal cancers.

Hainaut P.

Int. J. Cancer 71:79-87(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Molecular and cellular features of esophageal cancer cells.";

Nishihira T., Hashimoto Y., Katayama M., Mori S., Kuroki T.

J. Cancer Res. Clin. Oncol. 119:441-449(1993).