TE-8Homo sapiens (Human)Cancer cell line

Also known as: TE8

🤖 AI SummaryBased on 13 publications

Quick Overview

Human esophageal squamous cell carcinoma cell line for cancer research.

Detailed Summary

The TE-8 cell line is a human esophageal squamous cell carcinoma cell line derived from a primary tumor. It is widely used in cancer research to study molecular mechanisms, genetic alterations, and therapeutic responses. TE-8 has been utilized in studies focusing on gene expression, chromosomal abnormalities, and the role of specific genes like LRP1B and FAT in cancer progression. Research involving TE-8 has contributed to understanding the genetic basis of esophageal squamous cell carcinoma and has been instrumental in identifying potential therapeutic targets. The cell line is also used to evaluate the efficacy of drugs and treatments in preclinical models.

Research Applications

Molecular mechanisms of cancer progressionGenetic and epigenetic alterationsDrug efficacy testingGene expression studies

Key Characteristics

Derived from primary esophageal tumorUsed in studies of LRP1B and FAT gene alterationsRelevant for understanding esophageal squamous cell carcinoma
Generated on 6/17/2025

Basic Information

Database IDCVCL_1766
SpeciesHomo sapiens (Human)
Tissue SourceEsophagus[UBERON:UBERON_0001043]

Donor Information

Age63
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the esophagus
LineageEsophagus/Stomach
SubtypeEsophageal Squamous Cell Carcinoma
OncoTree CodeESCC

DepMap Information

Source TypeRIKEN
Source IDACH-000452_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Met237Ile (c.711G>T)Unspecified-from parent cell line T98G
MutationSimpleTP53p.Tyr220Cys (c.659A>G)Unspecified-PubMed=21173094

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D13S317
11
D16S539
9
D5S818
11,12
D7S820
12
TH01
6,7
TPOX
8,9
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

RNA-Seq analysis of human cell lines established from normal and neoplastic esophageal squamous epithelium.

Akagi I., Ishibashi O.

Genom. Data 12:4-6(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Bortezomib sensitizes human esophageal squamous cell carcinoma cells to TRAIL-mediated apoptosis via activation of both extrinsic and intrinsic apoptosis pathways.

Kusukawa J., Kage M., Shirouzu K., Yamana H.

Mol. Cancer Ther. 9:1842-1851(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7.

Lowe A.W., Beverloo H.B., van Dekken H., Tilanus H.W., Dinjens W.N.M.

Cancer Res. 67:7996-8001(2007).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma.

Imamura M., Amagasa T., Gray J.W., Hirohashi S., Inazawa J.

Cancer Res. 64:3741-3747(2004).

Expression of G1 cell cycle markers and the effect of adenovirus-mediated overexpression of p21Waf-1 in squamous cell carcinoma of the esophagus.

Morimatsu M.

Int. J. Oncol. 18:157-163(2001).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Itoh K.

Cell. Immunol. 177:176-181(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Molecular and cellular features of esophageal cancer cells.";

Nishihira T., Hashimoto Y., Katayama M., Mori S., Kuroki T.

J. Cancer Res. Clin. Oncol. 119:441-449(1993).

Comprehensive analysis of microRNA and mRNA expression in normal and tumorous human esophageal squamous cell lines using microarray datasets.

Makino H., Yoshida H., Miyashita M., Uchida E.

Dataset Papers Sci. 2013:376541.1-376541.3(2013).