TE-9Homo sapiens (Human)Cancer cell line

Also known as: Te9, TE9

🤖 AI SummaryBased on 12 publications

Quick Overview

Human esophageal squamous cell carcinoma cell line for cancer research

Detailed Summary

The TE-9 cell line is a human esophageal squamous cell carcinoma cell line derived from the esophagus. It is widely used in cancer research to study the molecular mechanisms of esophageal squamous cell carcinoma. TE-9 has been utilized in studies investigating the role of LRP1B gene silencing in cancer progression and in evaluating the efficacy of therapeutic agents like bortezomib in combination with TRAIL for inducing apoptosis. The cell line is also employed in research on genetic alterations, including homozygous deletions and mutations, and their implications in cancer development and treatment resistance. TE-9 provides a valuable model for understanding the genetic and molecular basis of esophageal squamous cell carcinoma and for developing targeted therapies.

Research Applications

Molecular mechanisms of esophageal squamous cell carcinomaLRP1B gene silencing in cancer progressionTherapeutic efficacy of bortezomib and TRAILGenetic alterations and cancer developmentTargeted therapy development

Key Characteristics

Homozygous deletions in LRP1B geneSensitivity to bortezomib and TRAIL-induced apoptosisGenetic instability and mutationsModel for studying cancer resistance mechanisms
Generated on 6/17/2025

Basic Information

Database IDCVCL_1767
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age48
Age CategoryAdult
SexMale

Disease Information

DiseaseSquamous cell carcinoma of the esophagus
LineageEsophagus/Stomach
SubtypeEsophageal Squamous Cell Carcinoma
OncoTree CodeESCC

DepMap Information

Source TypeRIKEN
Source IDACH-000694_source

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,13
D13S317
12
D16S539
11,12
D5S818
9,13
D7S820
8,10
TH01
6,9
TPOX
8
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Bortezomib sensitizes human esophageal squamous cell carcinoma cells to TRAIL-mediated apoptosis via activation of both extrinsic and intrinsic apoptosis pathways.

Kusukawa J., Kage M., Shirouzu K., Yamana H.

Mol. Cancer Ther. 9:1842-1851(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7.

Lowe A.W., Beverloo H.B., van Dekken H., Tilanus H.W., Dinjens W.N.M.

Cancer Res. 67:7996-8001(2007).

Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma.

Imamura M., Amagasa T., Gray J.W., Hirohashi S., Inazawa J.

Cancer Res. 64:3741-3747(2004).

Expression of G1 cell cycle markers and the effect of adenovirus-mediated overexpression of p21Waf-1 in squamous cell carcinoma of the esophagus.

Morimatsu M.

Int. J. Oncol. 18:157-163(2001).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Itoh K.

Cell. Immunol. 177:176-181(1997).

Inactivation of the p53 protein in cell lines derived from human esophageal cancers.

Hainaut P.

Int. J. Cancer 71:79-87(1997).

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

Cell. Immunol. 175:101-110(1997).

Molecular and cellular features of esophageal cancer cells.";

Nishihira T., Hashimoto Y., Katayama M., Mori S., Kuroki T.

J. Cancer Res. Clin. Oncol. 119:441-449(1993).