TGWHomo sapiens (Human)Cancer cell line

Also known as: TGW-nu-1, TGW-I-nu, TGW-nu, TOG

🤖 AI SummaryBased on 6 publications

Quick Overview

Human neuroblastoma cell line with MYCN amplification and genomic alterations.

Detailed Summary

The TGW cell line is a human neuroblastoma-derived cell line established from a 23-month-old Japanese boy with disseminated neuroblastoma. It exhibits MYCN amplification, a common genetic alteration in neuroblastoma, and has been used in studies to investigate the molecular mechanisms of tumor progression and therapeutic targets. TGW has also been involved in research on genomic instability and copy number variations, contributing to understanding the genetic basis of neuroblastoma. The cell line is part of a collection of neuroblastoma models used in cancer research, providing insights into the disease's genetic heterogeneity and potential treatment strategies.

Research Applications

Genomic instability and copy number variationsMYCN amplification in neuroblastomaMolecular mechanisms of tumor progressionTherapeutic target identification

Key Characteristics

MYCN amplificationGenomic alterationsNeuroblastoma model
Generated on 6/17/2025

Basic Information

Database IDCVCL_1771
SpeciesHomo sapiens (Human)
Tissue SourceAdrenal gland[UBERON:UBERON_0002369]

Donor Information

Age1
Age CategoryPediatric
SexMale

Disease Information

DiseaseNeuroblastoma
LineagePeripheral Nervous System
SubtypeNeuroblastoma
OncoTree CodeNBL

DepMap Information

Source TypeJCRB
Source IDACH-001674_source

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
15
D13S317
8,11
D16S539
9,13
D18S51
14
D21S11
30,33.2
D3S1358
16
D5S818
13
D7S820
12
D8S1179
14
FGA
23
Penta D
9,10
Penta E
11,12
TH01
6,7
TPOX
10,11
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Oncogenic mutations of ALK kinase in neuroblastoma.";

Hayashi Y., Mano H., Ogawa S.

Nature 455:971-974(2008).

High-resolution detection and mapping of genomic DNA alterations in neuroblastoma.

Maris J.M.

Genes Chromosomes Cancer 43:390-403(2005).

Malignant rhabdoid tumor shows incomplete neural characteristics as revealed by expression of SNARE complex.

Yoshida S., Narita T., Taga T., Ohta S., Takeuchi Y.

J. Neurosci. Res. 69:642-652(2002).

Origin of human neuroblastoma cell lines TGW and TNB1.";

Tsuchida Y., Sekiguchi M., Kaneko Y., Kanda N.

FEBS Lett. 263:191-191(1990).

Web Resources