TYK-nuHomo sapiens (Human)Cancer cell line

Also known as: TYKNU, TYKnu, TYK-NU

🤖 AI SummaryBased on 15 publications

Quick Overview

Human ovarian cancer cell line for research on molecular mechanisms and drug development.

Detailed Summary

TYK-nu is a human ovarian cancer cell line derived from an undifferentiated carcinoma. It is utilized in studies focusing on genomic and proteomic profiles to understand cancer progression and therapeutic responses. Research involving TYK-nu has contributed to identifying key genetic alterations and potential targets for cancer treatment. The cell line is part of comprehensive datasets that include genomic, transcriptomic, and drug sensitivity information, facilitating the development of targeted therapies. Its use in various studies highlights its importance in advancing ovarian cancer research and personalized medicine approaches.

Research Applications

Genomic profilingProteomic analysisDrug sensitivity testingMolecular mechanism studies

Key Characteristics

Used in studies of high-grade serous ovarian cancerPart of large-scale cancer cell line datasetsUtilized for identifying genetic alterations and therapeutic targets
Generated on 6/17/2025

Basic Information

Database IDCVCL_1776
SpeciesHomo sapiens (Human)

Donor Information

Age38
Age CategoryAdult
SexFemale
Raceasian

Disease Information

DiseaseHigh grade ovarian serous adenocarcinoma
LineageOvary/Fallopian Tube
SubtypeHigh-Grade Serous Ovarian Cancer
OncoTree CodeHGSOC

DepMap Information

Source TypeHSRRB
Source IDACH-000430_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg175His (c.524G>A)UnspecifiedSomatic mutation acquired during proliferationfrom parent cell line YCC-3
MutationSimpleNRASp.Gln61Lys (c.181C>A)UnspecifiedAcquired during resistance selection processPubMed=26214590
MutationSimpleNRASp.Gly12Asp (c.35G>A)UnspecifiedSomaticWistar

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D13S317
10,11
D16S539
9,10
D18S51
13
D19S433
14.2
D21S11
32.2
D2S1338
18,24
D3S1358
15
D5S818
12,13
D7S820
10
D8S1179
10,15
FGA
24
Penta D
12
Penta E
16
TH01
9
TPOX
9,11
vWA
14,16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status.

Tyanova S., Montag A., Lastra R.R., Lengyel E., Mann M.

Nat. Commun. 7:12645.1-12645.14(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Profiling of actionable gene alterations in ovarian cancer by targeted deep sequencing.

Ichikawa H., Shibata T., Yokota J., Okamoto A., Kohno T.

Int. J. Oncol. 46:2389-2398(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

Lessey B.A., Jordan V.C., Bradford A.P.

Gynecol. Oncol. 127:241-248(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.

Takayama M., Sato A., Inazawa J.

Jpn. J. Cancer Res. 93:1114-1122(2002).

A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization.

Sato A., Inazawa J.

Gynecol. Oncol. 81:172-177(2001).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Establishment of a cell line from human ovarian cancer (undifferentiated carcinoma of FIGO classification) and analysis of its cell-biological characteristics and sensitivity to anticancer drugs.

Yoshiya N.

Nihon Sanka Fujinka Gakkai Zasshi 38:1747-1753(1986).

Expression of HLA-DR molecules in human gestational choriocarcinoma cell lines and malignant cell lines.

Takeuchi S.

Placenta 8:293-298(1987).