UM-UC-3Homo sapiens (Human)Cancer cell line

Also known as: University of Michigan-Urothelial Carcinoma-3, UC-3, UMUC3, UM-UC3, UMUC-3

🤖 AI SummaryBased on 13 publications

Quick Overview

Human bladder cancer cell line with known mutations and genomic alterations.

Detailed Summary

UM-UC-3 is a human bladder cancer cell line derived from transitional cell carcinoma. It has been extensively studied for its genomic and molecular characteristics, including mutations in key cancer-related genes such as TERT, PIK3CA, and TP53. Research has shown that UM-UC-3 exhibits specific copy number alterations and mutational signatures associated with bladder cancer. The cell line is used in studies related to drug response, tumor biology, and the development of targeted therapies. It is also noted for its utility in understanding the genetic diversity and molecular mechanisms underlying bladder cancer progression.

Research Applications

Genomic and molecular characterizationDrug response and pharmacogenomicsTumor biology and progression studiesDevelopment of targeted therapies

Key Characteristics

Mutations in TERT, PIK3CA, and TP53Copy number alterationsSpecific mutational signatures associated with bladder cancer
Generated on 6/17/2025

Basic Information

Database IDCVCL_1783
SpeciesHomo sapiens (Human)
Tissue SourceUrinary bladder[UBERON:UBERON_0001255]

Donor Information

Age CategoryUnknown
SexMale

Disease Information

DiseaseBladder carcinoma
LineageBladder/Urinary Tract
SubtypeBladder Urothelial Carcinoma
OncoTree CodeBLCA

DepMap Information

Source TypeATCC
Source IDACH-000522_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Phe113Cys (c.338T>G)Homozygous-from parent cell line UM-UC-3-LuL-1
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationUnexplicitPARD3BEx9-18delHomozygous-from parent cell line UM-UC-3-LuL-1
MutationSimpleKRASp.Gly12Cys (c.34G>T)Unspecified-PubMed=21173094
MutationSimpleATMp.Gln2800fs*6 (c.8400delG)Heterozygous-from parent cell line UM-UC-3-LuL-1
Gene deletionPTEN-Hemizygous-Wistar
Gene deletionCDKN2A-HomozygousPossiblePubMed=26870271

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
8
D16S539
8,9
D18S51
14
D19S433
14,15
D21S11
31
D2S1338
23
D3S1358
17,18
D5S818
12
D7S820
8,9
D8S1179
13
FGA
20,21
Penta D
13
Penta E
12
TH01
6,9
TPOX
10
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Systematic review: characteristics and preclinical uses of bladder cancer cell lines.

Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.

Bladder Cancer 4:169-183(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.

Oncogene 36:35-46(2017).

Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

Data Brief 7:1302-1305(2016).

Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.

Masuishi Y., Kimura Y., Arakawa N., Hirano H.

J. Proteomics 139:77-83(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.

Chanock S.J., Valencia A., Real F.X.

BMC Genomics 16:403.1-403.16(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Identification of mutations in distinct regions of p85 alpha in urothelial cancer.

Knowles M.A.

PLoS ONE 8:E84411-E84411(2013).

Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.

Hurst C.D., Platt F.M., Knowles M.A.

Eur. Urol. 65:367-369(2014).

TSC1 involvement in bladder cancer: diverse effects and therapeutic implications.

Kwiatkowski D.J.

J. Pathol. 230:17-27(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

The use of short tandem repeat profiling to characterize human bladder cancer cell lines.

Chiong E., Dadbin A., Harris L.D., Sabichi A.L., Grossman H.B.

J. Urol. 181:2737-2748(2009).

Quantitation of Aurora kinase A gene copy number in urine sediments and bladder cancer detection.

Czerniak B.

J. Natl. Cancer Inst. 100:1401-1411(2008).

Characterization of a panel of cell lines derived from urothelial neoplasms: genetic alterations, growth in vivo and the relationship of adenoviral mediated gene transfer to coxsackie adenovirus receptor expression.

Zhou J.-H., Benedict W.F., Grossman H.B.

J. Urol. 175:1133-1137(2006).

Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.

Knowles M.A.

Genes Chromosomes Cancer 43:315-328(2005).

Novel chromosome findings in bladder cancer cell lines detected with multiplex fluorescence in situ hybridization.

Young B.D., Oliver R.T.D.

Cancer Genet. Cytogenet. 135:139-146(2002).

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines.

Coulter J., Kennedy W.J., Skilleter A., Habuchi T., Knowles M.A.

Genes Chromosomes Cancer 34:86-96(2002).

Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer.

Markl I.D.C., Jones P.A.

Cancer Res. 58:5348-5353(1998).

The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes.

Stadler W.M., Olopade O.I.

Urol. Res. 24:239-244(1996).

p53 mutations in bladder carcinoma cell lines.";

Lippa M., Hatzivassiliou G., Tan J.

Oncol. Res. 6:569-579(1994).

Improved growth of human urothelial carcinoma cell cultures.";

Grossman H.B., Wedemeyer G., Ren L.-Q., Wilson G.N., Cox B.

J. Urol. 136:953-959(1986).

Web Resources