VM-CUB-1Homo sapiens (Human)Cancer cell line

Also known as: VM-CUB-I, VM Cub 1, VMCub1, VMCUB1, VMCUB-1, VM-CUB1, VM-CB-1

🤖 AI SummaryBased on 13 publications

Quick Overview

Human bladder cancer cell line with known mutations and applications in cancer research.

Detailed Summary

VM-CUB-1 is a human bladder cancer cell line derived from transitional cell carcinoma. It is widely used in cancer research for studying genetic mutations, drug responses, and tumor biology. This cell line has been characterized for specific mutations in genes such as TERT and PIK3CA, which are relevant to bladder cancer progression. VM-CUB-1 is also utilized in studies involving the PI3K/AKT signaling pathway and has been part of large-scale genomic profiling efforts to understand cancer heterogeneity. Its utility in preclinical models makes it a valuable resource for investigating therapeutic strategies and molecular mechanisms in bladder cancer.

Research Applications

Genetic mutation analysisDrug response studiesTumor biology investigationPI3K/AKT signaling pathway studiesGenomic profiling for cancer heterogeneity

Key Characteristics

Mutations in TERT and PIK3CAPart of large-scale genomic studiesUsed in preclinical models
Generated on 6/17/2025

Basic Information

Database IDCVCL_1786
SpeciesHomo sapiens (Human)
Tissue SourceUrinary bladder[UBERON:UBERON_0001255]

Donor Information

Age CategoryUnknown
SexMale

Disease Information

DiseaseBladder carcinoma
LineageBladder/Urinary Tract
SubtypeBladder Urothelial Carcinoma
OncoTree CodeBLCA

DepMap Information

Source TypeDSMZ
Source IDACH-000545_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg175His (c.524G>A)UnspecifiedSomatic mutation acquired during proliferationfrom parent cell line YCC-3
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11
D13S317
10
D16S539
9,11,12
D18S51
16,19,20
D19S433
14,15
D21S11
30
D2S1338
26
D3S1358
15,16
D5S818
10,11
D7S820
8,11
D8S1179
11
FGA
22,24
Penta D
13
Penta E
7
TH01
6,9
TPOX
8
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Systematic review: characteristics and preclinical uses of bladder cancer cell lines.

Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.

Bladder Cancer 4:169-183(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.

Oncogene 36:35-46(2017).

Erratum to: The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.

Chanock S.J., Valencia A., Real F.X.

BMC Genomics 16:1019.1-1019.2(2015).

The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.

Chanock S.J., Valencia A., Real F.X.

BMC Genomics 16:403.1-403.16(2015).

Identification of mutations in distinct regions of p85 alpha in urothelial cancer.

Knowles M.A.

PLoS ONE 8:E84411-E84411(2013).

Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.

Hurst C.D., Platt F.M., Knowles M.A.

Eur. Urol. 65:367-369(2014).

Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.

Orntoft T.F., Zuiverloon T.C.M., Malats N., Zwarthoff E.C., Real F.X.

Eur. Urol. 65:360-366(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Signatures of mutation and selection in the cancer genome.";

Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Nature 463:893-898(2010).

PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors.

Carrato A., Tardon A., Serra C., Real F.X.

Cancer Res. 66:7401-7404(2006).

Short tandem repeat profiling provides an international reference standard for human cell lines.

Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001).

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984).

Human urologic cancer cell lines.";

Williams R.D.

Invest. Urol. 17:359-363(1980).

Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines.

Franks L.M.

Cancer Res. 46:3630-3636(1986).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.

Fogh J.

Natl. Cancer Inst. Monogr. 49:5-9(1978).

Web Resources