PaTu 8902Homo sapiens (Human)Cancer cell line

Also known as: PaCL2, 8902, PATU8902, PaTu8902, PATU-8902, PA-TU-8902

🤖 AI SummaryBased on 12 publications

Quick Overview

Pancreatic cancer cell line with genomic alterations and metabolic profiles.

Detailed Summary

PaTu 8902 is a pancreatic cancer cell line derived from a human tumor. It exhibits multiple genomic alterations, including amplifications and deletions, which are common in pancreatic carcinomas. Research has identified specific gene expression patterns and metabolic profiles associated with this cell line, making it a valuable model for studying pancreatic cancer biology and drug responses. The cell line is used in studies focusing on genomic profiling, metabolic reprogramming, and therapeutic target identification.

Research Applications

Genomic profilingMetabolic reprogrammingDrug response studies

Key Characteristics

Genomic amplificationsGene expression patternsMetabolic profiles
Generated on 6/17/2025

Basic Information

Database IDCVCL_1845
SpeciesHomo sapiens (Human)
Tissue SourcePancreas[UBERON:UBERON_0001264]

Donor Information

Age44
Age CategoryAdult
SexFemale

Disease Information

DiseasePancreatic adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeDSMZ
Source IDACH-000599_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Cys176Ser (c.526T>A)Homozygous-Unknown, Unknown, PubMed=10700188, PubMed=8194712
MutationSimpleKRASp.Gly12Val (c.35G>T)HeterozygousAcquiredUnknown, Unknown
MutationSimpleEP300p.Ser1650Tyr (c.4949C>A)Heterozygous-Unknown, Unknown, PubMed=10700188

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
11,12
D16S539
9,11
D18S51
15
D19S433
12,14
D21S11
30
D2S1338
20
D3S1358
16,18
D5S818
11,12
D7S820
8,10
D8S1179
13
FGA
23
Penta D
11
Penta E
12,15
TH01
9.3
TPOX
8
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.

Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.

Oncogene 24:1794-1801(2005).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

Immunocytochemical analysis of cell lines derived from solid tumors.

Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.

J. Histochem. Cytochem. 49:1369-1378(2001).

Mutations truncating the EP300 acetylase in human cancers.";

Delhanty J.D.A., Ponder B.A.J., Kouzarides T., Caldas C.

Nat. Genet. 24:300-303(2000).

Structural analysis of a new highly metastatic cell line PaTu 8902 from a primary human pancreatic adenocarcinoma.

Elsasser H.-P., Lehr U., Agricola B., Kern H.F.

Virchows Arch. B. Cell. Pathol. Incl. Mol. Pathol. 64:201-207(1993).

Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.

Arnold R.

Gastroenterology 106:1645-1651(1994).

Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.

Saeger H.-D.

Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013).

Web Resources