JJN-3Homo sapiens (Human)Cancer cell line

Also known as: JJN3

🤖 AI SummaryBased on 15 publications

Quick Overview

Human multiple myeloma cell line with B cell origin, used in cancer research.

Detailed Summary

JJN-3 is a human multiple myeloma cell line derived from a B cell lineage. It is widely used in research to study the molecular mechanisms of multiple myeloma, particularly focusing on genetic alterations and their implications in disease progression. The cell line is known for its expression of c-MYC and has been utilized in studies examining the role of MYC in tumor development and therapeutic resistance. Research involving JJN-3 has contributed to understanding the complexities of myeloma biology and the identification of potential therapeutic targets.

Research Applications

Cancer researchGenetic mutation analysisDrug sensitivity testingTranscriptional profiling

Key Characteristics

Expresses c-MYCUsed in multiple myeloma studiesB cell origin
Generated on 6/18/2025

Basic Information

Database IDCVCL_2078
SpeciesHomo sapiens (Human)
Tissue SourceBone marrow[UBERON:UBERON_0002371]

Donor Information

Age57
Age CategoryAdult
SexFemale

Disease Information

DiseaseMultiple myeloma
LineageLymphoid
SubtypePlasma Cell Myeloma
OncoTree CodePCM

DepMap Information

Source TypeDSMZ
Source IDACH-000653_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleNRASp.Gln61Lys (c.181C>A)UnspecifiedAcquired during resistance selection processPubMed=26214590

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D13S317
9
D16S539
11,12
D18S51
12,13
D19S433
13,14
D21S11
28,33.2
D2S1338
19,22
D3S1358
14,16
D5S818
11,12
D7S820
8,9
D8S1179
14,15
FGA
20,21
Penta D
11,12
Penta E
11
TH01
9
TPOX
8,10
vWA
15
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis.

Sirota M., Wiita A.P.

Leukemia 34:2754-2765(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways.

Pellat-Deceunynck C.

J. Hematol. Oncol. 11:137.1-137.13(2018).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines.

Moreau-Aubry A., Amiot M., Pellat-Deceunynck C.

Cytometry A 87:285-288(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Addiction to c-MYC in multiple myeloma.";

Holien T., Vatsveen T.K., Hella H., Waage A., Sundan A.

Blood 120:2450-2453(2012).

A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines.

Pellat-Deceunynck C.

Haematologica 96:574-582(2011).

Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles.

Todoerti K., Ronchetti D., Lambertenghi-Deliliers G., Neri A.

Genes Chromosomes Cancer 48:521-531(2009).

An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma.

Fabris S., Lambertenghi-Deliliers G., Neri A.

BMC Med. Genomics 1:37.1-37.9(2008).

Characterization of MYC translocations in multiple myeloma cell lines.

Dib A., Gabrea A., Glebov O.K., Bergsagel P.L., Kuehl W.M.

J. Natl. Cancer Inst. Monogr. 39:25-31(2008).

Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.

Stewart A.K., Carpten J.D., Bergsagel P.L.

Cancer Cell 12:131-144(2007).

Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.

Lambertenghi-Deliliers G., Bertoni F., Neri A.

Genes Chromosomes Cancer 46:226-238(2007).

The phenotype of normal, reactive and malignant plasma cells. Identification of 'many and multiple myelomas' and of new targets for myeloma therapy.

Moreau P., Amiot M., Pellat-Deceunynck C.

Haematologica 91:1234-1240(2006).

Ectopic expression of MAFB gene in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations.

Sonta S.-i., Nitta M., Taniwaki M., Ueda R.

Jpn. J. Cancer Res. 92:638-644(2001).

Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma.

Kuehl W.M., Bergsagel P.L.

Blood 97:729-736(2001).

Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells.

Sundan A.

Blood 97:516-522(2001).

Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia.

Drexler H.G., Matsuo Y.

Leuk. Res. 24:681-703(2000).

Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells.";

Bataille F.-R., Amiot M.

Br. J. Haematol. 107:392-395(1999).

Detection of MUM1/IRF4-IgH fusion in multiple myeloma.";

Shimizu S., Taniwaki M., Ueda R.

Leukemia 13:1812-1816(1999).

Fluorescence in situ hybridization analysis shows the frequent occurrence of 14q32.3 rearrangements with involvement of immunoglobulin switch regions in myeloma cell lines.

Lokhorst H.M., Clevers H.C., Bast B.J.E.G.

Cancer Genet. Cytogenet. 109:99-107(1999).

Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma.

Kuehl W.M.

Proc. Natl. Acad. Sci. U.S.A. 93:13931-13936(1996).

Normal and neoplastic human plasma cells express bcl-2 antigen.";

Franklin I.M.

Leukemia 5:768-771(1991).

Mutations of the p53 gene in human myeloma cell lines.";

Theillet C., Klein B.

Oncogene 7:1015-1018(1992).

The leukemia-lymphoma cell line factsbook.";

Drexler H.G.

(In book) ISBN 9780122219702; pp.1-733; Academic Press; London; United Kingdom (2001).

Multiple myeloma cell lines.";

Jernberg-Wiklund H., Nilsson K.

(In book chapter) Human cell culture. Vol. 3. Cancer cell lines part 3; Masters J.R.W., Palsson B.O. (eds.); pp.81-155; Kluwer Academic Publishers; New York; USA (2000).