P3HR-1Homo sapiens (Human)Cancer cell line

Also known as: P 3 HR 1, P3HR1, P3HRI, P3HR1-BL, P3J HR-1, P3J-HR-1, P3JHR-1, P3JHR1, P3JHRI, P3J HR1-K, P3J.HR1K, HR-1, HR1, HRI, HR1K, PO, HAI

🤖 AI SummaryBased on 14 publications

Quick Overview

P3HR-1 is a human B-cell lymphoma cell line used in cancer research.

Detailed Summary

P3HR-1 is a human B-cell lymphoma cell line derived from Burkitt's lymphoma. It is commonly used in research to study the molecular mechanisms of lymphomas and the effects of various treatments. This cell line has been utilized in studies involving p53 mutations, BRAF mutations, and the role of CD45 in hematopoietic cell function. P3HR-1 is also used in investigations related to the Epstein-Barr virus (EBV) and its interactions with host cells. The cell line is known for its ability to form tumors in nude mice, making it a valuable model for in vivo studies. Additionally, P3HR-1 has been involved in studies on the expression of NKG2D ligands and their impact on immune responses.

Research Applications

Study of p53 mutations in lymphomasInvestigation of BRAF mutationsAnalysis of CD45 expression in hematopoietic cellsResearch on EBV interactions with host cellsTumor formation in nude miceExpression of NKG2D ligands

Key Characteristics

B-cell lineageBurkitt's lymphoma originTumor formation in vivoExpression of CD45EBV-positive status
Generated on 6/19/2025

Basic Information

Database IDCVCL_2676
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age7
Age CategoryPediatric
SexMale
Raceblack_or_african_american

Disease Information

DiseaseEBV-related Burkitt lymphoma
LineageLymphoid
SubtypeBurkitt Lymphoma
OncoTree CodeBL

DepMap Information

Source TypeATCC
Source IDACH-000707_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleMYCp.Pro72Ser (c.214C>T)Unspecified-PubMed=8108117
MutationSimpleNRASp.Gln61Lys (c.181C>A)UnspecifiedAcquired during resistance selection processPubMed=26214590
MutationSimpleTP53p.Tyr163His (c.487T>C)Unspecified-from parent cell line P3HR-1
MutationSimpleTP53p.Glu287Ter (c.859G>T)Unspecified-from parent cell line P3HR-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
12
D16S539
10,11
D18S51
12,19
D19S433
12,15
D21S11
28,36
D2S1338
21
D3S1358
16,17
D5S818
12
D7S820
8,10
D8S1179
14,15
FGA
23,24
Penta D
2.2,12
Penta E
8
TH01
7,9
TPOX
6,8
vWA
15,18,19
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Mutations of the BRAF gene in human cancer.";

Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Nature 417:949-954(2002).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

J. Virol. 89:713-729(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.

Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.

Int. J. Cancer 125:212-221(2009).

Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.

Maesako Y., Uchiyama T., Ohno H.

Cancer Sci. 94:774-781(2003).

Enhanced destruction of lymphoid cell lines by peripheral blood leukocytes taken from patients with acute infectious mononucleosis.

Hutt L.M., Huang Y.-T., Dascomb H.E., Pagano J.S.

J. Immunol. 115:243-248(1975).

Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.

Adams A., Strander H., Cantell K.

J. Gen. Virol. 28:207-217(1975).

One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.

Fogh J., Fogh J.M., Orfeo T.

J. Natl. Cancer Inst. 59:221-226(1977).

Comparative study on radiosensitivities of cultured cell lines derived from several human tumors under hypoxic condition.

Inada T., Kasuga T., Nojiri I., Hiraoka T., Furuse T.

Gann 68:357-362(1977).

p53 is frequently mutated in Burkitt's lymphoma cell lines.";

Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.

EMBO J. 10:2879-2887(1991).

p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.

Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.

Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991).

Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.

Nakano A., Harada T., Morikawa S., Kato Y.

Acta Pathol. Jpn. 40:107-115(1990).

Human tumor lines for cancer research.";

Fogh J.

Cancer Invest. 4:157-184(1986).

The chromosomes of the EB virus-positive Burkitt cell line P3J.HR1K studied by the fluorescent staining technique.

Petit P., Verhest A., Lecluse-van der Bilt F.A., Jongsma A.P.M.

Pathol. Eur. 7:17-21(1972).

Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.

Klein G., Dombos L., Gothoskar B.

Int. J. Cancer 10:44-57(1972).

Studies on the infectivity and cytopathology of Epstein-Barr virus in human lymphoblastoid cells.

Durr F.E., Monroe J.H., Schmitter R., Traul K.A., Hirshaut Y.

Int. J. Cancer 6:436-449(1970).

Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines.

Maurer B.A., Imamura T., Wilbert S.M.

Cancer Res. 30:2870-2875(1970).

Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.

Klein G., Dombos L.

Int. J. Cancer 11:327-337(1973).

Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line.

Grace J.T. Jr.

J. Virol. 1:1045-1051(1967).

The action of DNA antagonists on Epstein-Barr virus (EBV)-associated early antigen (EA) in Burkitt lymphoma lines.

Gergely L., Klein G., Ernberg I.

Int. J. Cancer 7:293-302(1971).

Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.

Ehlin-Henriksson B., Klein G.

Int. J. Cancer 33:459-463(1984).

Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.

Sherrick D., Gray T.E.

Cancer Res. 41:3165-3171(1981).

Human lymphoma-lymphoma hybrids and lymphoma-leukemia hybrids. I. Isolation, characterization, cell surface markers, and B-cell markers.

Terasaki P.I., Ralph P.

J. Natl. Cancer Inst. 68:179-195(1982).

Human lymphoma-lymphoma hybrids and lymphoma-leukemia hybrids. II. Epstein-Barr virus induction patterns.

Klein G., Zeuthen J., Ber R., Ernberg I.

J. Natl. Cancer Inst. 68:197-202(1982).

Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.

Parsons R.G.

J. Immunol. 129:1336-1342(1982).

Persistence of transforming and nontransforming Epstein-Barr virus in high passages of P3HR-1 cell lines.

Trach L.

J. Natl. Cancer Inst. 69:585-590(1982).

Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt's lymphoma cell lines.

Albert T., Urlbauer B., Kohlhuber F., Hammersen B., Eick D.

Oncogene 9:759-763(1994).

Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas.

Bhatia K.G., Huppi K., Spangler G., Siwarski D., Iyer R., Magrath I.T.

Nat. Genet. 5:56-61(1993).

Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.

Magrath I.T.

FASEB J. 7:951-956(1993).

Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.

Kohn K.W.

Cancer Res. 53:4776-4780(1993).

Web Resources