JHH-2Homo sapiens (Human)Cancer cell line

Also known as: JHH2, Jhh-2

🤖 AI SummaryBased on 9 publications

Quick Overview

Human hepatocellular carcinoma cell line with p53 mutations and potential for drug sensitivity studies.

Detailed Summary

JHH-2 is a human hepatocellular carcinoma (HCC) cell line derived from liver tissue. It exhibits mutations in the p53 gene, which is a critical tumor suppressor involved in cell cycle regulation and apoptosis. These mutations may contribute to the malignant progression of the tumor. The cell line is utilized in research to study the molecular mechanisms of HCC, including the impact of p53 dysfunction on cancer development and therapeutic responses. JHH-2 is also part of large-scale studies examining copy number variations and gene expression profiles to identify potential biomarkers and therapeutic targets in liver cancer.

Research Applications

Molecular mechanisms of hepatocellular carcinomap53 gene mutations and cancer progressionDrug sensitivity and therapeutic response studies

Key Characteristics

p53 gene mutationsHepatocellular carcinoma originUsed in large-scale genomic and transcriptomic studies
Generated on 6/19/2025

Basic Information

Database IDCVCL_2786
SpeciesHomo sapiens (Human)
Tissue SourceAscites[UBERON:UBERON_0007795]

Donor Information

Age57
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseaseAdult hepatocellular carcinoma
LineageLiver
SubtypeHepatocellular Carcinoma
OncoTree CodeHCC

DepMap Information

Source TypeHSRRB
Source IDACH-000577_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53c.375+2T>G (IVS4+2T>G)HomozygousSplice donor mutationUnknown, Unknown, PubMed=31378681
MutationSimpleTERTc.1-124C>T (c.228C>T) (C228T)UnspecifiedIn promoterfrom parent cell line Hep-G2
MutationSimpleCDKN2Ap.His83Tyr (c.247C>T) (p.Ala97Val, c.290C>T)Unspecified-PubMed=11787853

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
12,13
D13S317
12
D16S539
10,13
D18S51
13
D21S11
29,32.2
D3S1358
17
D5S818
9,13
D7S820
10
D8S1179
11,16
FGA
21,24
Penta D
10,13
Penta E
21
TH01
6,7
TPOX
8
vWA
14
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

A pharmacogenomic landscape in human liver cancers.";

Hui L.-J.

Cancer Cell 36:179-193.e11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.

Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.

Gastroenterology 157:760-776(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Xu J.-C.

Hepatology 58:706-717(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Yeast functional assay of the p53 gene status in 11 cell lines and 26 surgical specimens of human hepatocellular carcinoma.

Gao C., Ohashi R., Pu H., Inoue Y., Tsuji T., Miyazaki M., Namba M.

Oncol. Rep. 6:1267-1271(1999).

Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.

Fukaya K.-i., Ishioka C., Namba M.

Acta Med. Okayama 51:261-265(1997).

Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.

Kosaka T., Tsuji T., Namba M.

J. Med. Virol. 48:133-140(1996).

Integration of hepatitis B virus DNA into cells of six established human hepatocellular carcinoma cell lines.

Shimizu K., Niiya M., Kameda H., Fujita K., Ohno T.

Hepato-Gastroenterol. 37:457-460(1990).

The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.

Ohashi R., Namba M.

Tissue Cult. Res. Commun. 16:173-178(1997).