EBC-1Homo sapiens (Human)Cancer cell line

Also known as: EBC1, EBC-1/original

🤖 AI SummaryBased on 14 publications

Quick Overview

EBC-1 is a human squamous cell carcinoma cell line used in cancer research.

Detailed Summary

EBC-1 is a human squamous cell carcinoma cell line derived from a patient with squamous cell carcinoma. It is widely used in research to study the molecular mechanisms of cancer, particularly in the context of lung and head and neck cancers. This cell line has been utilized in studies involving genetic mutations, such as those in the EGFR and PARD3 genes, and has been part of investigations into the role of tumor suppressor genes like DBC1 and FAT. EBC-1 is also used to evaluate the efficacy of targeted therapies and to understand the genetic and epigenetic changes associated with cancer progression.

Research Applications

Genetic mutation analysisTumor suppressor gene studiesEGFR and PARD3 gene researchDBC1 and FAT gene investigationsTargeted therapy efficacy testing

Key Characteristics

Squamous cell carcinoma originUsed in lung and head and neck cancer researchPart of studies on genetic and epigenetic changes in cancer
Generated on 6/19/2025

Basic Information

Database IDCVCL_2891
SpeciesHomo sapiens (Human)
Tissue SourceSkin[UBERON:UBERON_0002097]

Donor Information

Age69
Age CategoryAdult
SexMale

Disease Information

DiseaseLung squamous cell carcinoma
LineageLung
SubtypeLung Squamous Cell Carcinoma
OncoTree CodeLUSC

DepMap Information

Source TypeRIKEN
Source IDACH-000563_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Glu171Ter (c.511G>T)Unspecified-PubMed=9887230, PubMed=7503188
MutationSimpleEGFRp.Leu858Arg (c.2573T>G)UnspecifiedIn 10% of cellsPubMed=31882684
MutationSimpleDDR2p.Thr681Ile (c.2042C>T)Heterozygous-from parent cell line EBC-1

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
12
D16S539
8,9
D18S51
12,17
D21S11
29,30
D3S1358
15
D5S818
11
D7S820
10,11
D8S1179
14
FGA
22
Penta D
13
Penta E
16
TH01
7
TPOX
8
vWA
16,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Genetic diversity among the present Japanese population: evidence from genotyping of human cell lines established in Japan.

Kasai F., Fukushima M., Miyagi Y., Nakamura Y.

Hum. Cell 37:944-950(2024).

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Functional analysis of discoidin domain receptor 2 mutation and expression in squamous cell lung cancer.

Sueoka E., Kimura S., Sueoka-Aragane N.

Lung Cancer 110:35-41(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Gene-expression data integration to squamous cell lung cancer subtypes reveals drug sensitivity.

Wu D., Pang Y., Wilkerson M.D., Wang D., Hammerman P.S., Liu J.S.

Br. J. Cancer 109:1599-1608(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Lack of AKT activation in lung cancer cells with EGFR mutation is a novel marker of cetuximab sensitivity.

Igishi T., Burioka N., Nanba E., Shimizu E.

Cancer Biol. Ther. 13:369-378(2012).

Prevalence of human papillomavirus 16/18/33 infection and p53 mutation in lung adenocarcinoma.

Iwakawa R., Kohno T., Enari M., Kiyono T., Yokota J.

Cancer Sci. 101:1891-1896(2010).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

A gene-alteration profile of human lung cancer cell lines.";

Montuenga L.M., Minna J.D., Yokota J., Sanchez-Cespedes M.

Hum. Mutat. 30:1199-1206(2009).

Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array.

Hamakawa H.

Oncogene 26:5300-5308(2007).

Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp.

Fukuyama S., Yokote A., Kobayashi K., Kanazawa M., Hagiwara K.

Cancer Res. 65:7276-7282(2005).

Frequent silencing of DBC1 is by genetic or epigenetic mechanisms in non-small cell lung cancers.

Hirohashi S., Inazawa J., Imoto I.

Hum. Mol. Genet. 14:997-1007(2005).

Correlation between interleukin 6 production and tumor proliferation in non-small cell lung cancer.

Fujisawa T.

Cancer Immunol. Immunother. 53:786-792(2004).

TERC identified as a probable target within the 3q26 amplicon that is detected frequently in non-small cell lung cancers.

Yokoi S., Yasui K., Iizasa T., Imoto I., Fujisawa T., Inazawa J.

Clin. Cancer Res. 9:4705-4713(2003).

Expression of tetraspanins in human lung cancer cells: frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer.

Hayashi S., Aozasa K., Kawase I.

Oncogene 22:674-687(2003).

Mutation and expression of the DCC gene in human lung cancer.";

Yokota J.

Neoplasia 2:300-305(2000).

Comprehensive analysis of p53 gene mutation characteristics in lung carcinoma with special reference to histological subtypes.

Fujita T., Kiyama M., Tomizawa Y., Kohno T., Yokota J.

Int. J. Oncol. 15:927-934(1999).

Establishment of a drug sensitivity panel using human lung cancer cell lines.

Kohara H., Harada M.

Acta Med. Okayama 53:67-75(1999).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Inhibitory effects of cholera toxin on in vitro growth of human lung cancer cell lines.

Kiura K., Watarai S., Shibayama T., Ohnoshi T., Kimura I., Yasuda T.

Anticancer Drug Des. 8:417-428(1993).

Experimental model of human lung cancer, Part II. Heterotransplantation of human continuous cell lines from squamous cell carcinoma and adenocarcinoma of the lung.

Watanabe Y.

Okayama Igakkai Zasshi 97:701-712(1985).

Experimental model of human lung cancer, Part I. Establishment and characterization of new tissue culture cell lines from human squamous cell carcinoma and adenocarcinoma of the lung.

Watanabe Y.

Okayama Igakkai Zasshi 97:691-700(1985).

Establishment of human continuous cell lines from squamous cell, adeno- and small cell carcinoma of the lung and the results of heterotransplantation.

Ikeda H., Nakata Y., Ohnoshi T., Kimura I.

Nihon Haigan Gakkai 22:53-58(1982).

Web Resources