HuH-1Homo sapiens (Human)Cancer cell line

Also known as: huH1, HUH1, HUh1, HuH1, huH 1, HUH-1, huH-1

🤖 AI Summary0

Quick Overview

HuH-1 is a human hepatocellular carcinoma cell line used in cancer research.

Detailed Summary

HuH-1 is a human hepatocellular carcinoma (HCC) cell line derived from liver tissue. It is commonly used in research to study the molecular mechanisms of liver cancer and to evaluate potential therapeutic targets. The cell line has been characterized for its genetic and molecular profiles, including mutations in the p53 gene and the presence of hepatitis B virus (HBV) sequences. HuH-1 is utilized in studies related to viral oncogenesis, drug sensitivity, and the identification of biomarkers for liver cancer. Its applications include investigating the role of HBV in hepatocarcinogenesis and understanding the genetic alterations associated with HCC progression.

Research Applications

Cancer researchViral oncogenesisDrug sensitivity testingBiomarker identification

Key Characteristics

p53 gene mutationsHBV integrationHepatocellular carcinoma origin
Generated on 6/19/2025

Basic Information

Database IDCVCL_2956
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age53
Age CategoryAdult
SexMale
Raceasian
Subtype Featureshbs_antigen_carrier

Disease Information

DiseaseAdult hepatocellular carcinoma
LineageLiver
SubtypeHepatocellular Carcinoma
OncoTree CodeHCC

DepMap Information

Source TypeHSRRB
Source IDACH-000475_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg110Leu (c.329G>T)Unspecified-PubMed=10741724, PubMed=7732013
MutationSimpleAXIN1p.Asn302Profs*111 (c.904_907delAACC)Unspecified-PubMed=31395879

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X,Y
CSF1PO
11
D13S317
10,12
D16S539
9
D18S51
16
D21S11
33.2
D3S1358
16,17
D5S818
10,13
D7S820
11
D8S1179
10,12
FGA
24
Penta D
12
Penta E
16,18
TH01
6,9
TPOX
8,11
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling.

Umu S.U., Rounge T.B., Roessler S., Lorenzo-Bermejo J.

Cancers (Basel) 12:2510.1-2510.14(2020).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

A pharmacogenomic landscape in human liver cancers.";

Hui L.-J.

Cancer Cell 36:179-193.e11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.

Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.

Gastroenterology 157:760-776(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.

Satoh M., Shimizu N., Kohara A.

R. Soc. Open Sci. 5:172472-172472(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Xu J.-C.

Hepatology 58:706-717(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.

Kosaka T., Tsuji T., Namba M.

J. Med. Virol. 48:133-140(1996).

p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.

Harris C.C.

Carcinogenesis 14:987-992(1993).

Rearrangement of the surface antigen gene of hepatitis B virus integrated in the human hepatoma cell lines.

Taira M.

Nucleic Acids Res. 11:5391-5402(1983).

Production of HBs-antigen by two new human hepatoma cell lines and its enhancement by dexamethasone.

Huh N.-H., Utakoji T.

Gann 72:178-179(1981).

Human hepatoma cell lines.";

Alexander J.J.

(In book chapter) Neoplasms of the liver; Okuda K., Ishak K.G. (eds.); pp.47-56; Springer; Tokyo; Japan (1987).