KMS-34Homo sapiens (Human)Cancer cell line

Also known as: Kawasaki Medical School-34, KMS34

🤖 AI SummaryBased on 13 publications

Quick Overview

Human multiple myeloma cell line with B cell origin, used in cancer research.

Detailed Summary

KMS-34 is a human multiple myeloma cell line derived from B cells. It is widely used in cancer research to study the molecular mechanisms of multiple myeloma and to develop targeted therapies. The cell line has been characterized in various studies for its genetic and molecular profiles, including mutations and gene expression patterns. Research on KMS-34 has contributed to understanding the role of specific genes and pathways in myeloma progression and drug resistance. The cell line is part of several large-scale studies, including the Cancer Cell Line Encyclopedia (CCLE) and other genomic databases, providing valuable data for comparative analyses and drug screening.

Research Applications

Cancer researchDrug screeningGenomic profilingMolecular mechanisms of multiple myeloma

Key Characteristics

B cell originMultiple myelomaUsed in large-scale genomic studies
Generated on 6/19/2025

Basic Information

Database IDCVCL_2996
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age60
Age CategoryAdult
SexFemale
Raceasian

Disease Information

DiseaseMultiple myeloma
LineageLymphoid
SubtypePlasma Cell Myeloma
OncoTree CodePCM

DepMap Information

Source TypeHSRRB
Source IDACH-000541_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Trp146Ter (c.438G>A)Unspecified-CelloPub=CLPUB00546

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D13S317
8
D16S539
10,13
D18S51
13,15
D21S11
32.2
D3S1358
15,17
D5S818
12
D7S820
10,11
D8S1179
12,13
FGA
24
Penta D
9,13
Penta E
14,16
TH01
7,9
TPOX
8,9
vWA
14
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis.

Sirota M., Wiita A.P.

Leukemia 34:2754-2765(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

Yang H.H., Koeffler H.P.

BMC Cancer 18:940.1-940.13(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles.

Todoerti K., Ronchetti D., Lambertenghi-Deliliers G., Neri A.

Genes Chromosomes Cancer 48:521-531(2009).

An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma.

Fabris S., Lambertenghi-Deliliers G., Neri A.

BMC Med. Genomics 1:37.1-37.9(2008).

Characterization of MYC translocations in multiple myeloma cell lines.

Dib A., Gabrea A., Glebov O.K., Bergsagel P.L., Kuehl W.M.

J. Natl. Cancer Inst. Monogr. 39:25-31(2008).

Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma.

Stewart A.K., Carpten J.D., Bergsagel P.L.

Cancer Cell 12:131-144(2007).

Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease.

Lambertenghi-Deliliers G., Bertoni F., Neri A.

Genes Chromosomes Cancer 46:226-238(2007).

Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma.

Taniwaki M., Inazawa J.

Am. J. Pathol. 165:71-81(2004).