KP-3Homo sapiens (Human)Cancer cell line

Also known as: KP3

🤖 AI SummaryBased on 9 publications

Quick Overview

Human pancreatic cancer cell line with metastatic potential.

Detailed Summary

KP-3 is a human pancreatic cancer cell line established from a liver metastasis of a pancreatic tumor. It exhibits characteristics of adenosquamous carcinoma and has been used in studies related to tumor metastasis and metabolic profiling. The cell line is known for its ability to form liver metastases when injected into nude mice, making it a valuable model for studying pancreatic cancer progression and therapeutic responses. KP-3 has been utilized in research to identify metabolic subtypes and their implications in cancer treatment strategies.

Research Applications

Metastasis studiesMetabolic profilingTumor biologyDrug response evaluation

Key Characteristics

Liver metastasis capabilityAdenosquamous carcinoma originUsed in metabolic subtype identification
Generated on 6/19/2025

Basic Information

Database IDCVCL_3005
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age75
Age CategoryAdult
SexMale
Raceasian

Disease Information

DiseaseSquamous cell carcinoma of pancreas
LineagePancreas
SubtypeAdenosquamous Carcinoma of the Pancreas
OncoTree CodePAASC

DepMap Information

Source TypeHSRRB
Source IDACH-000108_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Pro153Alafs*28 (c.455dupC) (c.455_456insC) (p.P152fs) (c.459_460insC)Heterozygous-from parent cell line HGC-27
MutationSimpleSMAD4p.Glu538Ter (c.1612G>T)Homozygous-from parent cell line KP-3
MutationSimpleKRASp.Gly12Val (c.35G>T)HeterozygousAcquiredUnknown, Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D10S1248
12
D12S391
14
D13S317
9,11
D16S539
9,13
D18S51
17
D19S433
17
D1S1656
16,17.3
D21S11
30,32
D22S1045
11
D2S1338
18,20
D2S441
10,14
D3S1358
16
D5S818
13
D7S820
10,12
D8S1179
13,14
FGA
23
Penta D
12,13
Penta E
15,17
TH01
6,9.3
TPOX
9,11
vWA
17,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Establishment of highly invasive pancreatic cancer cell lines and the expression of IL-32.

Tanaka S., Nishida T., Hatta H., Nakajima T.

Oncol. Lett. 20:2888-2896(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.

Shimazoe T., Nawata H., Kono A.

Oncol. Rep. 1:1223-1227(1994).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

Establishment and characterization of human pancreatic cancer cell lines in tissue culture and in nude mice.

Ikeda Y., Ezaki M., Hayashi I., Yasuda D., Nakayama K., Kono A.

Jpn. J. Cancer Res. 81:987-993(1990).

Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.

Saeger H.-D.

Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013).