MCASHomo sapiens (Human)Cancer cell line

🤖 AI SummaryBased on 15 publications

Quick Overview

Ovarian cancer cell line with potential for research in tumor biology and drug development.

Detailed Summary

The MCAS cell line is derived from ovarian cancer and is used in research to study tumor biology and drug development. It has been involved in studies related to genetic alterations, such as amplifications and mutations in genes like CTGF, PTPN1, and ZNF217. Research on MCAS has contributed to understanding the molecular mechanisms of ovarian cancer, including the role of epigenetic changes and gene expression profiles. This cell line is part of a collection of cell lines used to identify potential therapeutic targets and to evaluate drug responses in ovarian cancer research.

Research Applications

Genomic and epigenetic studiesDrug sensitivity profilingGene expression analysisTumor biology research

Key Characteristics

Amplification of 20q regionsMutations in CTGF, PTPN1, and ZNF217Epigenetic alterationsUsed in studies of ovarian cancer progression
Generated on 6/19/2025

Basic Information

Database IDCVCL_3020
SpeciesHomo sapiens (Human)
Tissue SourceOvary[UBERON:UBERON_0000992]

Donor Information

Age60
Age CategoryAdult
SexFemale

Disease Information

DiseaseMucinous adenocarcinoma of ovary
LineageOvary/Fallopian Tube
SubtypeMucinous Ovarian Cancer
OncoTree CodeMOV

DepMap Information

Source TypeHSRRB
Source IDACH-000796_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleSMAD4p.Ser504Arg (c.1512T>A)Unspecified-from parent cell line MCAS
MutationSimplePIK3CAp.His1047Arg (c.3140A>G)Unspecified-PubMed=25926053, PubMed=20570890
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757
MutationSimpleCDKN2Ap.Arg80Ter (c.238C>T) (p.Pro94Leu, c.281C>T)Homozygous-from parent cell line HL-60

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
8,12
D16S539
12
D18S51
15
D19S433
14.2,15
D21S11
29,31
D2S1338
19,25
D3S1358
16,17
D5S818
11,13
D7S820
8,11
D8S1179
11,12
FGA
18,21
Penta D
10,12
Penta E
16
TH01
6,8
TPOX
8,11
vWA
14,17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

Profiling of actionable gene alterations in ovarian cancer by targeted deep sequencing.

Ichikawa H., Shibata T., Yokota J., Okamoto A., Kohno T.

Int. J. Oncol. 46:2389-2398(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

Lessey B.A., Jordan V.C., Bradford A.P.

Gynecol. Oncol. 127:241-248(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Cetuximab inhibits the growth of mucinous ovarian carcinoma tumor cells lacking KRAS gene mutations.

Machida S., Ozawa K., Suzuki M.

Oncol. Rep. 27:1336-1340(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer.

Hirohashi S., Inazawa J., Imoto I.

Cancer Res. 67:7095-7105(2007).

Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.

Takayama M., Sato A., Inazawa J.

Jpn. J. Cancer Res. 93:1114-1122(2002).

A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization.

Sato A., Inazawa J.

Gynecol. Oncol. 81:172-177(2001).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Establishment and characterization of a cell line derived from mucinous cystadenocarcinoma of human ovary.

Kidera Y., Yoshimura T., Ohkuma Y., Iwasaka T., Sugimori H.

Nihon Sanka Fujinka Gakkai Zasshi 37:1820-1824(1985).

Web Resources