NUGC-4Homo sapiens (Human)Cancer cell line

Also known as: Nagoya University-Gastric Cancer-4, NU-GC-4, NUGC4, MUGC-4

🤖 AI SummaryBased on 14 publications

Quick Overview

Human gastric cancer cell line with specific genetic and molecular characteristics.

Detailed Summary

NUGC-4 is a human gastric cancer cell line established from a poorly differentiated adenocarcinoma with signet-ring cell features. It is characterized by specific genetic alterations, including the absence of AKT1 PH domain mutations and the presence of certain mutations in the ATBF1 gene. The cell line exhibits distinct patterns of gene expression and has been used in studies related to cancer biology, including investigations into the role of the ZAK kinase and its isoforms. NUGC-4 is also noted for its response to various anticancer agents and has been utilized in research on the molecular mechanisms of gastric cancer progression and therapeutic strategies.

Research Applications

Cancer biologyMolecular mechanisms of gastric cancerTherapeutic strategiesGene expression analysisDrug sensitivity testing

Key Characteristics

Poorly differentiated adenocarcinoma with signet-ring cell featuresAbsence of AKT1 PH domain mutationsPresence of ATBF1 gene mutationsDistinct ZAK isoform expressionResponse to anticancer agents
Generated on 6/19/2025

Basic Information

Database IDCVCL_3082
SpeciesHomo sapiens (Human)
Tissue SourceParagastric lymph node[UBERON:UBERON_8480059]

Donor Information

Age35
Age CategoryAdult
SexFemale
Raceasian

Disease Information

DiseaseGastric signet ring cell adenocarcinoma
LineageEsophagus/Stomach
SubtypeDiffuse Type Stomach Adenocarcinoma
OncoTree CodeDSTAD

DepMap Information

Source TypeRIKEN
Source IDACH-000674_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationNone reportedTP53---PubMed=19787792

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
11,13
D16S539
9
D18S51
16,19
D21S11
30.3,31
D3S1358
15,16
D5S818
11,12
D7S820
11
D8S1179
12
FGA
23,26
Penta D
9,12
Penta E
13,15
TH01
7,9
TPOX
8,9
vWA
14,18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Forty-nine gastric cancer cell lines with integrative genomic profiling for development of c-MET inhibitor.

Kragh M., Horak I.D., Chung H.C., Rha S.Y.

Int. J. Cancer 143:151-159(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Molecular integrative clustering of Asian gastric cell lines revealed two distinct chemosensitivity clusters.

Yang H.H., Lee M.A.

PLoS ONE 9:E111146-E111146(2014).

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer.

Firestein R., Zhang Z.-M.

Nat. Commun. 5:3830.1-3830.8(2014).

A compensatory role of NF-kappaB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines.

Sato K., Iwaya T., Koeda K., Wakabayashi G.

PLoS ONE 9:E90155-E90155(2014).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Haber D.A.

Cancer Res. 70:2158-2164(2010).

Absence of the AKT1 pleckstrin homology domain mutation in Japanese gastrointestinal and liver cancer patients.

Omata M.

APMIS 116:931-933(2008).

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

Tomoda H., Yamori T., Tsuruo T.

J. Natl. Cancer Inst. 97:765-777(2005).

Screening of DNA copy-number aberrations in gastric cancer cell lines by array-based comparative genomic hybridization.

Okanoue T., Inazawa J.

Cancer Sci. 96:100-110(2005).

Alpha-fetoprotein producing gastric cancer lacks transcription factor ATBF1.

Nakabayashi H., Kawaguchi M., Asai K., Kato T., Itoh M.

Oncogene 20:869-873(2001).

Screening the p53 status of human cell lines using a yeast functional assay.

Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Mol. Carcinog. 19:243-253(1997).

Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4.

Imaizumi M., Ichihashi H., Kondo T., Takagi H.

Jpn. J. Surg. 18:438-446(1988).

A human monoclonal antibody recognizing a surface antigen on stomach cancer cells.

Takahashi T.

Jpn. J. Cancer Res. 80:546-553(1989).

Aberrant elevation of tyrosine-specific phosphorylation in human gastric cancer cells.

Ohnishi Y., Xiao H.-Y., Nagai Y., Takagi H.

Jpn. J. Cancer Res. 82:1428-1435(1991).

Missense mutations and a deletion of the p53 gene in human gastric cancer.

Wada K., Uchida T., Nishisaki H., Nagao M., Kasuga M.

Biochem. Biophys. Res. Commun. 182:215-223(1992).