QGP-1Homo sapiens (Human)Cancer cell line
Also known as: QGP1, QGP 1, QGP, QCP-1
Quick Overview
Human pancreatic D cell line for cancer research
Detailed Summary
Research Applications
Key Characteristics
Basic Information
Database ID | CVCL_3143 |
---|---|
Species | Homo sapiens (Human) |
Tissue Source | Pancreas, islets of Langerhans[UBERON:UBERON_0000006] |
Donor Information
Age | 61 |
---|---|
Age Category | Adult |
Sex | Male |
Race | asian |
Disease Information
Disease | Somatostatinoma |
---|---|
Lineage | Pancreas |
Subtype | Pancreatic Neuroendocrine Tumor |
OncoTree Code | PANET |
DepMap Information
Source Type | HSRRB |
---|---|
Source ID | ACH-000347_source |
Known Sequence Variations
Type | Gene/Protein | Description | Zygosity | Note | Source |
---|---|---|---|---|---|
MutationSimple | TP53 | p.Pro98Leufs*25 (c.293delC) | Heterozygous | - | Unknown, Unknown, PubMed=29444910, PubMed=25612765 |
MutationSimple | KRAS | p.Gly12Val (c.35G>T) | Heterozygous | Acquired | Unknown, Unknown |
MutationSimple | APC | p.Arg2166Gln (c.6497G>A) | Heterozygous | - | Unknown, Unknown, PubMed=29444910, PubMed=25612765 |
Haplotype Information (STR Profile)
Short Tandem Repeat (STR) profile for cell line authentication.
Loading gene expression data...
Publications
Human and rodent cell lines as models of functional melatonin-responsive pancreatic islet cells.
Zibolka J., Bahr I., Peschke E., Muhlbauer E., Bazwinsky-Wutschke I.
Methods Mol. Biol. 2550:329-352(2022).
Pan-cancer proteomic map of 949 human cell lines.";
Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.
Cancer Cell 40:835-849.e8(2022).
Quantitative proteomics of the Cancer Cell Line Encyclopedia.";
Sellers W.R., Gygi S.P.
Cell 180:387-402.e16(2020).
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Sellers W.R.
Nature 569:503-508(2019).
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
Cancer Res. 79:1263-1273(2019).
The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines.
Persson M., Stenman G., Kristiansson E., Johanson V., Nilsson O.
Endocr. Relat. Cancer 25:367-380(2018).
Differential effector engagement by oncogenic KRAS.";
McCormick F.
Cell Rep. 22:1889-1902(2018).
Establishment of the first well-differentiated human pancreatic neuroendocrine tumor model.
Izbicki J.R., Lohse A.W., Schrader J.
Mol. Cancer Res. 16:496-507(2018).
A landscape of pharmacogenomic interactions in cancer.";
Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
Cell 166:740-754(2016).
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Loewer M., Sahin U., Castle J.C.
Genome Med. 7:118.1-118.7(2015).
Exome-level comparison of primary well-differentiated neuroendocrine tumors and their cell lines.
Schroth G.P., Beutler A.S., Banck M.S.
Cancer Genet. 208:374-381(2015).
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Golub T.R., Root D.E., Hahn W.C.
Sci. Data 1:140035-140035(2014).
A resource for cell line authentication, annotation and quality control.
Neve R.M.
Nature 520:307-311(2015).
Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1.
Hofland L.J., Op de Beeck K.
J. Mol. Endocrinol. 54:137-147(2015).
A comprehensive transcriptional portrait of human cancer cell lines.
Settleman J., Seshagiri S., Zhang Z.-M.
Nat. Biotechnol. 33:306-312(2015).
The somatostatin analogue octreotide inhibits growth of small intestine neuroendocrine tumour cells.
Castano J.P., Oberg K.E., Giandomenico V.
PLoS ONE 7:E48411-E48411(2012).
Human neuroendocrine tumor cell lines as a three-dimensional model for the study of human neuroendocrine tumor therapy.
Wong C., Vosburgh E., Levine A.J., Cong L., Xu E.Y.
J. Vis. Exp. 66:e4218.1-e4218.7(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
Nature 483:603-607(2012).
Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.
Shimazoe T., Nawata H., Kono A.
Oncol. Rep. 1:1223-1227(1994).
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Haber D.A.
Cancer Res. 70:2158-2164(2010).
Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.
Int. J. Cancer 91:350-358(2001).
p53 and K-RAS alterations in pancreatic epithelial cell lesions.";
Maurer J., Maacke H., Deppert W.
Oncogene 8:289-298(1993).
Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma.
Kaku M., Nishiyama T., Yagawa K., Abe M.
Gann 71:596-601(1980).
Identification and partial characterization of the unglycosylated peptide of carcinoembryonic antigen synthesized by human tumor cell lines in the presence of tunicamycin.
Kuroki M., Kuroki M., Ichiki S., Matsuoka Y.
Mol. Immunol. 21:743-746(1984).
A somatostatin-secreting cell line established from a human pancreatic islet cell carcinoma (somatostatinoma): release experiment and immunohistochemical study.
Iguchi H., Hayashi I., Kono A.
Cancer Res. 50:3691-3693(1990).
Establishment of primary cell lines in pancreatic cancer.";
Ruckert F., Pilarsky C., Grutzmann R.
(In book chapter) Pancreatic cancer. Molecular mechanism and targets; Srivastava S. (eds.); pp.259-274; InTechOpen; London; United Kingdom (2012).