TOV-112DHomo sapiens (Human)Cancer cell line

Also known as: TOV112, TOV-112, TOV112D, TOV-112d

🤖 AI SummaryBased on 13 publications

Quick Overview

Human ovarian cancer cell line with potential for AKT pathway research.

Detailed Summary

TOV-112D is a human ovarian cancer cell line derived from high-grade serous ovarian cancer. It is utilized in research focusing on the AKT signaling pathway and its role in cancer progression. The cell line has been characterized for its response to various therapeutic agents, particularly in the context of AKT inhibition. Studies have shown that TOV-112D exhibits specific genetic and molecular features that make it a valuable model for investigating the mechanisms of drug resistance and sensitivity in ovarian cancer. This cell line is part of a panel of cell lines used to study the genomic and proteomic diversity of ovarian cancers, contributing to the development of targeted therapies.

Research Applications

AKT pathway researchDrug resistance mechanismsGenomic and proteomic profilingTherapeutic target identification

Key Characteristics

High-grade serous ovarian cancer originAKT pathway activationResponse to AKT inhibitorsGenomic diversity in ovarian cancer models
Generated on 6/20/2025

Basic Information

Database IDCVCL_3612
SpeciesHomo sapiens (Human)
Tissue SourceOvary[UBERON:UBERON_0000992]

Donor Information

Age42
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseaseEndometrioid carcinoma of ovary
LineageOvary/Fallopian Tube
SubtypeEndometrioid Ovarian Cancer
OncoTree CodeEOV

DepMap Information

Source TypeATCC
Source IDACH-000048_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Arg175His (c.524G>A)UnspecifiedSomatic mutation acquired during proliferationfrom parent cell line YCC-3
MutationSimpleSMARCA4p.Leu639fs (c.1915delC)Homozygous-from parent cell line TOV-112D
MutationSimpleCTNNB1p.Ser37Ala (c.109T>G)Homozygous-from parent cell line TOV-112D

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
12
D13S317
8
D16S539
9,12
D18S51
17
D19S433
14
D21S11
31
D2S1338
19,24
D3S1358
15
D5S818
10
D7S820
9,10
D8S1179
9,13
FGA
20
Penta D
9
Penta E
11
TH01
6
TPOX
8,11
vWA
18
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Re-assigning the histologic identities of COV434 and TOV-112D ovarian cancer cell lines.

Trent J.M., Weissman B.E., Huntsman D.G., Wang Y.-M.

Gynecol. Oncol. 160:568-578(2021).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status.

Tyanova S., Montag A., Lastra R.R., Lengyel E., Mann M.

Nat. Commun. 7:12645.1-12645.14(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Characterization of ovarian cancer cell lines as in vivo models for preclinical studies.

Noonan A.M., Annunziata C.M.

Gynecol. Oncol. 142:332-340(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes.

Helleman J.

PLoS ONE 9:E103988-E103988(2014).

Type-specific cell line models for type-specific ovarian cancer research.

Shumansky K., Shah S.P., Kalloger S.E., Huntsman D.G.

PLoS ONE 8:E72162-E72162(2013).

Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer.

Arcand S.L., Tonin P.N., Provencher D.M., Mes-Masson A.-M.

BMC Cancer 12:379.1-379.16(2012).

DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

Lessey B.A., Jordan V.C., Bradford A.P.

Gynecol. Oncol. 127:241-248(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Genomic complexity and AKT dependence in serous ovarian cancer.";

Taylor B.S., Sander C., Rosen N., Levine D.A., Solit D.B.

Cancer Discov. 2:56-67(2012).

Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities.

Long S.B.T., Vonguyen L., Chen D.J., Gray J.W., Chen F.-Q.

Oncol. Rep. 23:1021-1026(2010).

Comparative proteomic study of two closely related ovarian endometrioid adenocarcinoma cell lines using cIEF fractionation and pathway analysis.

Dai L., Li C., Shedden K.A., Misek D.E., Lubman D.M.

Electrophoresis 30:1119-1131(2009).

Chromosomes 6 and 18 induce neoplastic suppression in epithelial ovarian cancer cells.

Jacobs I.J., Jones C., Gayther S.A.

Int. J. Cancer 124:1037-1044(2009).

Characterization of three new serous epithelial ovarian cancer cell lines.

Provencher D.M., Mes-Masson A.-M.

BMC Cancer 8:152.1-152.18(2008).

Selenium binding protein 1 in ovarian cancer.";

Bandera C.A., Welch W.R., Berkowitz R.S., Mok S.C., Ng S.-W.

Int. J. Cancer 118:2433-2440(2006).

Microarray analysis of gene expression mirrors the biology of an ovarian cancer model.

Manderson E.N., Provencher D.M., Mes-Masson A.-M.

Oncogene 20:6617-6626(2001).

Characterization of four novel epithelial ovarian cancer cell lines.

Wang J.-C., Eydoux P., Savoie R., Tonin P.N., Mes-Masson A.-M.

In Vitro Cell. Dev. Biol. Anim. 36:357-361(2000).

Web Resources